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1. Introduction  

Options are one of the most popular financial derivatives 
in the market, and they have good risk aversion functions. 
Barrier options are subject to certain restrictions during 
the effective process of options, and their purpose is to 
control investors’ gains or losses within a specific range. 
A barrier option is a kind of option related to the path. In 
addition to its return depends on the underlying asset price 
at the expiration of the option; it is also associated with 
the underlying asset price reaching a certain level during 
the entire option period. The controllable effect of barrier 
options on the maximum potential return makes barrier 
options low in cost, which is quite popular among inves-
tors. 

Barrier options are divided into two categories: knock-
out options and knock-in options. Knock-out option re-
fers to an option whose contract becomes invalid when 
the underlying asset price hits an obstacle. If the price of 
the underlying asset during the validity period of the op-
tion is greater than the barrier value, it is called a knock-
down option; if the price of the underlying asset during 
the validity period of the option is less than the barrier 
value, it is called a knock-up option. The knock-in option 
refers to the option that the contract takes effect when the 
underlying asset price hits an obstacle. It is also divided 
into knock-down options and knock-up options. Since 
each type of option can be divided into the call and put 
options, we can divide barrier options into eight catego-
ries: down-and-in call options, down-and-in put options, 
up-and-in call options, up-and-out put options, down-
and-out call options, down-and-out put options, up-and-
out call options, and up-and-in put options. 

Black and Scholes (1973) first published an article about 
barrier options and gave the pricing formula of down-and-
in call options. After that, Reiner and Rubinstein (1991) 
added the pricing formulas of other types of European 
barrier options. Heynen and Kat (1994), Carr (1995) stud-
ied the rainbow barrier period of some barrier options. Li 
(2016) used no-arbitrage pricing and risk-neutral pricing 
principles to combine bounded differences with equations. 
And under the condition of transaction costs, the barrier 
option of the stochastic volatility model is priced, and the 
numerical solution of the option price is obtained. Yang 
(2017) combined the pricing problem of barrier options 
with the weighted average index jump-diffusion model, 
combined the double La-place transform method with the 

up-and-in call barrier option, and then used the Euler 
method and Monte-Carlo simulation method to simulate 
its numerical value. Xue and Deng (2018) combined the 
discrete barrier option with the Bates model and obtained 
a closed solution for the discrete barrier option price. 
They used the Girsanov’s theorem, Fourier transform, 
and other methods and also performed numerical simula-
tions. 

However, many phenomena in the real world are neither 
completely random nor completely vague. Liu (2007) 
proposed uncertainty theory based on normality, duality, 
subadditivity, and product axioms to deal with this com-
plex uncertainty. Liu (2019) further defined the uncertain 
process and uncertain differential equations, proposed the 
basic model of uncertain financial markets, and gave the 
pricing formulas of European call and put options under 
uncertain environments. Chen (2011) studied the pricing 
of American options under Liu’s model and gave an ana-
lytical solution to the price of American options. Peng and 
Yao (2011) proposed a new stock model, Peng-Yao’s 
model, and gave the pricing formulas of European and 
American options. Chen et al. (2013) proposed a stock 
model with periodic dividends. Zhang and Liu (2014) ob-
tained the pricing formula of geometric average Asian op-
tions based on the uncertain stock model. Yao (2015) de-
duced the necessary and sufficient conditions for no arbi-
trage in the stock model. In the same year, Yao (2015) 
proposed an uncertain stock model with floating interest 
rates. Sun and Chen (2015) obtained the pricing formula 
of arithmetic average Asian options based on the uncer-
tain stock model. Gao et al. (2017) received a lookback 
option pricing formula with a fixed strike price under the 
uncertain Ornstein–Uhlenbeck (OU) model. 

This paper proposes the barrier option pricing of the ex-
ponential OU model under an uncertain environment. 
The rest of this article is as follows. The second section 
reviews some basic concepts in the uncertainty theory and 
introduces the uncertain exponential OU model. The third 
section introduces knock-in barrier options, considers Eu-
ropean up-and-in call options and European down-and-in 
put options, and derives their option pricing formulas. 
The fourth section presents knock-out barrier options and 
considers European knock-up put options and European 
knock-down call options, and derives their option pricing 
formulas. Section 5 uses RuiSheng Technology’s data to 
estimate the parameters of the pricing formulas, and cal-
culates the price of four types of barrier options according 
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to the algorithm. Finally, Section 6 gives some conclu-
sions. 

 

2. Preliminaries  

Uncertainty theory was founded by Liu and refined by 
Liu (2009). This section will introduce some basic defini-
tions and results in uncertainty theory. 

2.1 Uncertain differential equation 

Definition 2.1 (Liu (2009)) Let L be a σ-algebra on a 

nonempty set Г. A set function M: →[0, 1] is called an 
uncertain measure if it satisfies the following axioms. 

Axiom 1 (Normality Axiom) M{Г}=1 for

 

the universal 
set Г. 

Axiom 2 (Duality Axiom) M{Λ}+M{Λc}=1 for any even 
Λ. 

Axiom 3 (Subadditivity Axiom) For every countable se-

quence of events , , ··· , we have 
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Axiom 4 (Product Axiom) Let ( , , )k k kΓ L M be unccer-

tainty spaces for 1, 2, .k =  The product uncertain 

measure M is an uncertain measure satisfying 
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where Ʌk are
 
arbitrarily chosen events from Lk for k=1, 2, 

···, respectively. 

2.2 Uncertain exponential OU model 

This section will introduce the exponential OU model 
for uncertain financial market. Let Xt be the stock price 
and Yt be the bond price. Assuming that the stock price Xt 

follows a geometric Liu process. Then Liu’s stock model 
is written as follows, 

t t t t

t t

dX X dt X dC
dY rY dt

µ σ= +
 =                  

⑴

 

where r is the riskless interest rate, μ is the stock drift, σ is 
the stock diffusion, and Ct is a Liu process. This model 
represents that the stocks have constant expected rate of 
return. 

In order to reflect the actual situation of stock price 
changes better, this article considers the stock price obeys 
the uncertain exponential OU model. 

 The uncertain exponential OU model is written as fol-
lows 

(1 ln )t t t t tdX c X X dt X dCµ σ= − +
    

⑵

     

where c > 0, σ > 0, and µ are constants.  

Theorem 2.4 (Sun et al. (2015)) Suppose that the stock 

price follows the model (2), then
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Theorem 2.5
 

(Dai et al. (2017)) Suppose that the stock 

price follows the model (2), then the inverse uncertainty 

distribution of Xt is 
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3. Knock-in Options 

This section will introduce the pricing formulas of the 
up-and-in call option and down-and- in put option. The 
up-and-in call option is a kind of barrier option that takes 
effect only when the spot price, which is below barrier 
level at first reaches the barrier level before the expiration 
date. The down-and-in put option is a kind of barrier op-
tion that takes effect only when the spot price, which is 
above barrier level at first goes down before the expira-
tion date. 

For simplicity, we define an indicator function 

1,
( )

0,L

if x L
I x

if x L
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where L is a given real number. 

L
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3.1 European up-and-in call option 

Consider the European up-and-in call option with a strike 
price K, an expiration date T and a barrier level L for some 
stock in the uncertain market. Let an uncertain process Xt 

denote the stock price and r denote the riskless interest rate. 
Then the European up-and-in call option price is 

0 t
exp( ) sup ( )c

ui L t T
T

f rT E I X X K +

≤ ≤

  = − ⋅ −    
. 

Theorem 3.1. Suppose that a European up-and-in call 
option for the stock model (2) has a strike price is K, an 
expiration time T, and a barrier level L. Then the European 
up-and-in call option pricing formula is   

1
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where β is the infimum value of α, which satisfies the ine-
quality 
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Proof. According to Tian et al. (2019), the uncertain 
variable 

0
sup ( )L t T

t T
I X X K +

≤ ≤

  ⋅ − 
 

 

has an inverse uncertainty distribution 
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is the α-path of Xt. We have 
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according to the expected value formula of uncertain var-
iable. Besides, we have 

0
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t T
I X α

≤ ≤

  = 
   

if and only if 

0
0 0
sup sup exp exp( ) ln

1 3(1 exp( )) ln .
1

t
t T t T

X ct X

ct L
c c

α µ

σ αµ
µ π α

≤ ≤ ≤ ≤

 
= − + 

 
   

− − + ≥    −   

 

Because X0< L, we can replace the above inequality with 
inequality 
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Thus, α need to satisfy the above inequality, and we make 
β be α’s infimum value, therefore the price of European 
up-and-in call option is 
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The theorem is thus proved. 

3.2 European down-and-in put option 

Let K be the strike price of a European down-and-in put 
option, and its expiration date is T, the barrier level is L for 
some stock in the uncertain market. The stock price is rep-
resented by an uncertain process Xt and the riskless interest 
rate is represented by r. Then the option price is 
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( )( )0 t
exp( ) 1 inf ( ) .p

di L t TT
f rT E I X K X +

≤ ≤

 = − − ⋅ −    

Theorem 3.2. Consider that the strike price of an Euro-
pean down-and-in put option for stock model (2) is K, its 
expiration time is T, and its barrier level is L. Then the pric-
ing formula of the European up-and-in put option is
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where β is the supremum value of α, which satisfies the 
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Proof. According to Tian et al. (2019), the uncertain 
variable 
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Because X0 > L, we can replace the above  

inequality with inequality 
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Thus, α need to satisfy the above inequality, and we make 
β be α’s supremum value, therefore the price of European 
down-and-in put option is 
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The theorem is thus proved. 

 

4. Knock-out Options 

This section will introduce the pricing formulas of Eu-
ropean up-and-out put option and European down-and-
out call option. 

4.1 European up-and-out put option 
 

Let K be the strike price of a European up-and-out put 
option, and its expiration date is T, the barrier level is L for 
some stock in the uncertain market. The stock price is rep-
resented by an uncertain process Xt and the riskless interest 
rate is represented by r. Then the option price is 

0 t
exp( ) 1 sup ( ) .p

do L t T
T

f rT E I X K X +

≤ ≤

   = − − ⋅ −      
Theorem 4.1. Consider that the strike price of a European 
up-and-out put option for stock model (2) is K, its expira-
tion time is T, and its barrier level is L. Then the pricing 
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formula of the European up-and-out put option is 
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where β is the supremum value of α, which satisfies the 
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Proof. According to Tian et al. (2019), the uncertain 
variable 
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according to the expected value formula of uncertain var-
iable. Besides, we have 
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Because X0 < L, we can replace the above inequality 
with inequality 
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Thus, α need to satisfy the above inequality, and we make 
β be α’s supremum value, therefore the price of European 
up-and-out put option is  
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The theorem is thus proved. 

4.2 European down-and-out call option 
 
Let K be the strike price of a European down-and-out call 

option, and its expiration date is T, the barrier level is L for 
some stock in the uncertain market. The stock price is rep-
resented by an uncertain process Xt and the riskless interest 
rate is represented by r. Then the option price is 

( )0 t
exp( ) inf ( )c

do L t TT
f rT E I X X K +

≤ ≤

 = − ⋅ −   . 

Theorem 4.2. Consider that the strike price of a Euro-
pean down-and-out call option for stock model (2) is K, its 
expiration time is T, and its barrier level is L. Then the pric-
ing formula of the European down-and-out call option is 
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where β is the infimum value of α, which satisfies the ine-
quality 
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Proof. According to Tian et al. (2019), the uncertain 
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according to the expected value formula of uncertain var-
iable. Besides, we have 
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Because X0 > L, we can replace the above inequality with 
inequality 
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Thus, α need to satisfy the above inequality, and we make 
β be α’s infimum value, therefore the price of European 
down-and-out call option is 
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The theorem is thus proved. 

 

5. Simulation example  

5.1 Parameter estimation 

Assuming that the sample data at times t1, t2,···, tn are

1 2
, , , ,

nt t tX X X  respectively. The given confidence 

level is θ. According to Yang et al. (2020), we use the 
following method to estimate the parameters (µ, c, σ), 
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In this inequality group, 
nt

X and 1
ntX θ−  reached the 

minimum value of the difference at time tn. Use 

( )* * *,,cµ σ  to represent the optimal solution of the 

minimization problem (3). According to Yang et al. 

(2020), the estimation( )* * *,,cµ σ  of equation (2) is the 

optimal solution of the minimization problem (3). 

Table 1: Sample data of RuiSheng Technology 
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X1  43.15 X7  49.45 X13  57.50 

X2  42.75 X8  48.85 X14  56.85 

X3  43.60 X9  47.80 X15  59.30 

X4  46.45 X10  47.55 X16  61.30 

X5  47.35 X11  49.10 X17  59.80 

X6  46.90 X12  52.35 X18  60.85 

 

We choose RuiSheng Technology as the research object, 
we have selected the closing price from June 16th , 2020 
to July 13th, 2020, and the data is displayed in the Table. 
There are 18 days of total trading days, i.e., n = 18. For 
the uncertain exponential OU process, taking θ = 0.90 and 
solving the minimization problem (4), we obtain the esti-
mation 

( ) ( )* * * , , 0.0317,0.1234,0.0078 ,cµ σ =
 

then, the uncertain exponential OU process is  

0.0317(1 0.1234ln ) 0.0078 .t t t t tdX X X dt X dC= − +  
5.2 European up-and-in call option 

Assume the daily interest rate is r = 0.0064%, and the 
stock has a spot price X0=43.15 with the parameters c = 
0.1234, µ = 0.0317 and σ = 0.0078. Then the price of a 
European up-and-in call option with a striking price K = 
48, an expiration data T = 30 and a barrier lever L = 49 is 

4.6065.c
uif =  

Then, we give the curve graphs of barrier option formula 
with different parameters as follows. Figure 1(a) denotes 

the price c
uif with the change of the riskless interest rate 

r, Figure 1(b) denotes the price c
uif with the change of 

strike price K; Figure 1(c) denotes the price c
uif with 

the change of spot price X0; Figure 1(d) denotes the price 
with the change of barrier level L. If one parameter 
changes, other parameters remain unchanged. 

5.3 European down-and-in put option 

The price of a European down-and-in put option with a 
striking price K = 65, an expiration data T = 30 and a bar-
rier lever L = 35 is 

3.3649.p
dif =  

Then, we give the curve graphs of barrier option formula 
with different parameters as follows. Figure 2(a) denotes 

the price p
dif with the change of the riskless interest rate r; 

Figure 2(b) denotes the price p
dif  with the change of 

strike price K; Figure 2(c) denotes the price p
dif with 

the change of spot price X0; Figure 2(d) denotes the price 
p

dif  with the change of barrier level L. If one parameter 

changes, other parameters remain unchanged. 

5.4 European up-and-out put option 

The price of a European up-and-out put option with a 
striking price K = 65, an expiration data T = 30 and a bar-
rier lever L = 50 is 

1.6326.p
uof =  

Then, we give the curve graphs of barrier option formula 
with different parameters as follows. Figure 3(a) denotes 
the price p

uof with the change of the riskless interest rate r; 

Figure 3(b) denotes the price p
uof with the change of strike 

price K; Figure 3(c) denotes the price p
uof with the 

change of spot price X0; Figure 3(d) denotes the price 
p

uof  with the change of barrier level L. If one parameter 

changes, other parameters remain unchanged. 

5.5 European down-and-out call option 

The price of a European down-and-out call option with 
a striking price K = 40, an expiration data T = 30 and a 
barrier lever L = 37 is 

 5.6500.c
dof =  

Then, we give the curve graphs of barrier option formula 
with different parameters as follows. Figure 4(a) denotes 

the price c
dof with the change of the riskless interest rate r; 

Figure 4(b) denotes the price c
dof with the change of strike 

price K; Figure 4(c) denotes the price c
dof with the 

change of spot price X0; Figure 4(d) denotes the price 
c

dof  with the change of barrier level L. If one parameter 

changes, other parameters remain unchanged. 

 

6. Conclusions 

This paper investigated the barrier option pricing prob-
lem of the exponential Ornstein–Uhlenbeck model in an 
uncertain environment. It studied and derived the pricing 
formulas of four options, which are up-and-in call option, 
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down-and-in put option, up-and-out put option, down-
and- out call option. And based on the stock price of 
Ruisheng Technology, the prices of these four barrier op-
tions are derived. 

 

 

 

  

 

Figure 1: European up-and-in call option price c
uif with different parameters 

 

 

Figure 2: European down-and-in put option price p
dif with different parameters 
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Figure 3: European up-and-out put option price p
uof with different parameters 

 

 

with different parametersc
dof out call option price-and-European down: 4Figure  
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