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Abstract  

Image recognition is not very effective in the water environment due to multiple factors, such as high scattering 

and high scattering in the water column. This is why the relevant parameters in the Faster R-CNN network model 

need to adjust continuously to improve the effectiveness of water detection. The control variable method adjusts 

the program's learning rate by tuning the network model's parameters. Then, the number of training rounds is 

adjusted according to the loss function of each round, and finally, we can get the number of matches with the 

minimum loss function. Based on the experimental results on the dataset, it is shown that the proposed method 

not only selects the learning rate with the best detection results but also has the strongest robustness and achieves 

a 96%-99% recognition rate for passenger ships, cargo ships, warships, and bridges compared with other learning 

rates. Experiments show that the Faster R-CNN network model detects water targets with significant results, and 

the best network model learning rate parameter is 6×10-3. 

Keywords: Aquatic target detection, Convolutional Neural Networks, Artificial Intelligence  

☆(Do not DELETE) 

 

                                           

Copyright ⓒ 2017, International Association of e-Navigation and Ocean Economy.  

This article is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 

Peer review under responsibility of Korea Advanced Institute for International Association of e-Navigation and Ocean 

Economy 

https://doi.org/10.52820/j.enavi.2022.19.001 

http://www.e-navi.kr/
mailto:LL17852178133@163.com
mailto:dz_jfg@163.com,
mailto:Yulimin05@163.com


2 ChaoYu Lu et al. / International Journal of e-Navigation and Maritime Economy 19 (2022) 001–006 

 

1. Introduction  

In recent years, with the continuous growth of foreign 

economic trade, ships in and out of ports have been 

frequent, and various maritime traffic accidents and 

maritime disasters occur from time to time. Effective 

identification of vessels plays a vital role in the safe 

driving of ships and naval traffic safety management but 

also helps to improve port navigation, and the ability of 

cruise rescue and has significant application value to 

national maritime safety. Researchers have targeted 

convolutional neural networks in deep learning to 

rapidly make accurate detection and classification of 

arbitrary aquatic targets while minimizing human and 

material costs. 

According to Shaofeng Jiang et al. (2014), they 

Proposed a SAR commercial ship classification 

algorithm based on structural features, which can 

classify bulk carriers, container ships, and fishing vessels; 

with the rise of neural network methods, Jin Xiong 

Liang (2015) used BP neural network to identify 

infrared images of six types of ships, namely aircraft 

carriers, destroyers, frigates, passenger ships, container 

ships, and oil tankers; A few years later, Katie Rainey 

(2016) designed a Convolutional Neural Networks 

(CNN) for satellite ship image classification and 

achieved a better classification result. Compared with 

SAR images and infrared images, digital images can 

provide richer visual information. Zhao Liang et al. 

(2016) used convolutional neural networks to extract 

features from digital ship images, then fused HOG and 

HSV features to construct ship image features, and then 

used the Support Vector Machine (SVM) method to 

classify container ships, passenger ships, fishing ships, 

warships, sailboats. Proia, N et al. (2010) used Bayesian 

decision-making to identify small vessels. Yokoya N  

et al. (2015) used the Hough transform for ship detection. 

Although this research has achieved better recognition 

results, they mainly aim at ship image libraries with 

significant differences in ship shapes and single 

backgrounds. Many transportation ship images taken in 

real ports and channels with complex environments, 

slight differences in ship shapes, and high similarity 

caused by shooting angles make the traditional methods 

for classification and recognition of ship images not get 

better results. The Faster R-CNN network model is 

tuned to improve the recognition effect in this thesis. 

2. Related Work  

2.1. Convolutional Layer 

A convolutional layer designs a set of learnable 

convolutional kernels whose primary function is to 

extract image features from an image. The height and 

width of the convolutional kernels are usually relatively 

small. In the forward propagation of the network, the 

convolutional kernel of the convolutional layer performs 

convolutional operations with the input data according to 

the set stride, and the result of the operations generates 

the feature map of the layer through the nonlinear 

activation transform, and the output feature map of the 

convolutional layer can be expressed as: 
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Where 
l
jX denotes the j th feature map 

1l
jX of the 

output layer (layer l), the i th feature map of the input 

layer (layer l-1), jM denotes the selected combination 

of input feature maps, 
l
ijK denotes the convolution 

kernel between the input and output feature maps, * 

denotes the convolution operation,
i
jb  is the bias term 

corresponding to the feature maps, and )(xf  means the 

activation function in the convolutional network. 

2.2. Pooling Layer 

  The pooling layer, also called the aggregation layer, is 

mainly used to reduce the dimensionality of the feature 

map. The pooling layer aggregates the values of the 

regions in the feature map and maps the importance of 

an area into one value, thus reducing the size of the 

feature map. The most used pooling method is Max 

pooling, and there are also Stochastic pooling, Mean 

pooling, etc. Based on Scherer D (2010), Figure 1 shows 

an example of Max pooling and Mean pooling. 

Figure 1:Example diagram of maximum pooling 

2.3. Fully Connected Layer 

Fully Connected Layer is the structure of a traditional 

neural network, which refers to the interconnection 

between the nodes of two adjacent layers of neurons. 
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Fully connected layer converts a multidimensional 

feature map into a one-dimensional vector while 

retaining helpful information about the features. In 

convolutional neural network architectures for image 

classification tasks, the fully connected layer is usually 

placed at the tail of the network to feed parts into the 

classifier. 

2.4. Classification Layer 

The classification layer of convolutional neural 

networks is most commonly used in Softmax regression, 

which is a generalization of logistic regression to multi-

classification tasks. For the data set 
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Softmax regression, where the class of y is k, that is 

   kiy ,,2,1  , for the input x, it is necessary to use 

the hypothesis function to find the probability value 

 xjyp | of x for each outcome of category j. Here the 

k probability values are represented by a k-dimensional 

vector, so the hypothesis function takes the form 
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Where 1,,2,1
 nRk   are the parameters and 

 is normalized to the probability 

distribution ,and all their probabilities sum to 1. The loss 

function of Softmax can be written as  
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Where   jiy 1  is the indicator function that takes 

the value of 1 if   jiy   and 0 vice versa. The 

probability of input x being classified as category j in 

Softmax regression is calculated as 
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2.5. Faster R-CNN Networks 

The Faster R-CNN algorithm is an upgraded algorit

hm of the two-step target detection algorithms R-CN

N and Fast R-CNN. The flow of the Faster R-CNN

 algorithm is shown in Figure 2. According to Simo

nyan k (2020) and Zisserman A (2020), They propo

sed the VGG network architecture and the ResNet r

esidual network structure, respectively. First, the feat

ures of the input image are extracted using VGG ne

twork architecture or ResNet residual network struct

ure, and the candidate regions are generated on the 

extracted feature maps using Region Proposal Netwo

rk (RPN). The fully connected layer achieves the tar

get detection to classify and regress the candidate re

gions after non-maximal value suppression. 

 

Figure 2: Faster R-CNN algorithm flow 

The Faster R-CNN algorithm introduces the Anchor 

mechanism and edge regression to generate nine frames 

of different sizes (three areas, three aspect ratios) using 

sliding windows with Anchor as the center, and each 

candidate frame is determined to contain target 

information. The frame with the highest intersection 

ratio to the actual value is selected as the detection result 

and regressed to achieve target detection. The structure 

of the RPN network is shown in Figure 3. 
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Figure 3: RPN network structure 

The purpose of introducing the RPN network structure 

in the Faster R-CNN algorithm is to extract the possible 

regions of the target from the image, replacing the 

selective search method used in the previous algorithm, 

and allowing end-to-end training of the entire network. 

The classification layer mainly predicts the confidence 

score of the target, and the regression layer calculates the 

position coordinate offset of the target. Since the Faster 

R-CNN algorithm directly uses the RPN network to 

generate the detection frame, it can effectively solve the 

problem of slow generation of candidate regions. 

However, it still detects the target at a single scale. 

 

3. Experiments  

3.1. Experimental Dataset 

Before importing the dataset into the network model, 

images must be collected and data pre-processed. In this 

paper, we collect 560 valid images from different 

original pictures of ships and bridges as raw image data. 

In the process of neural network operation, to prevent 

unknown errors, all images are pre-processed to a 

uniform size of 480×320 in this paper. The image 

samples are shown in Figure 4. This paper performs 

detection tasks for aquatic targets, and the targets are 

roughly divided into four categories: passenger ships, 

cargo ships, warships, and bridges. The dataset images 

are divided into two categories: 448 photos in the 

training set and 112 appearances in the test set, and each 

pack contains four types of images. When multiple 

candidate targets appear in the source image, multiple 

ROIs will be tagged to improve the neural network 

model's target detection accuracy and reliability 

parameters. 

Figure 4:Sample of source image dataset classification 

3.2. Training  

The parameters are adjusted by controlling the 

variables, and assuming that the comparison of the 

image type of the source image dataset is a step, the 

learning rate can handle the step. Then the loss function 

of each round is constantly observed. If the loss function 

shows small fluctuations up and down, but the overall 

trend is down, then the operation can continue, and the 

experiment can be completed. If the loss function 

becomes larger and larger, it means overfitting, and the 

number of rounds needs to be adjusted to test that the 

minimum loss function can be obtained under this 

parameter. After completing all the operations, we can 

keep the final loss function value and run the test set to 

observe whether the unknown pictures produce results. 

The value of the loss function can be obtained by 

calculating Equation (5). The smaller the result indicates, 

the higher accuracy of the output result. 
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4. Experimental results and Discussion 

4.1. Experimental results 

  By setting different learning rates, we can get the loss 

function results and the test set's accuracy, and the data 

are shown in Tables 5 and 6. 

Table 5:Values of loss function 

    Loss Function        

Learning  

Rate 

Loss Detector 

classifier 

Loss Detector 

regression 

2×10-4 0.421 0.181 

2×10-2 1.29 0.8 

6×10-3 0.25 0.136 

 

 

Figure 6:Mean confidence values for each category in the 

three learning rates 
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4.2. Experimental Discussion 

By comparing the overall confidence mean, the faith 

means of each category and the loss function values of 

these three learning rate parameters, we can analyze the 

optimal parameters of the Faster R-CNN network model 

for this dataset. 

As shown in Figure 7, by comparing the overall 

confidence mean values under the learning rate 

parameters of 2×10-4, 2×10-2, and 6×10-3, we found that 

the faith implies a value of 6×10-3 is 98%, which is the 

highest value of the three parameters. Therefore, we can 

determine that this neural network's best learning rate 

parameter is around 6×10-3. 

Figure 7:Comparison of confidence means of three learning 

rate 

In Figure 6, comparing the mean confidence values of 

the four categories under the three learning rate 

parameters, the various confidence levels of 2×10-2 are 

generally low, and the confidence values of 6×10-3 are 

above 95 for all classes with tiny errors between the 

predicted and actual values. Therefore, this parameter 

has the best learning effect among the three learning rate 

parameters. 

As seen from Figure 8, among the loss function 

values of the three learning rates, the actual output value 

differs the least from the desired output value for the 

learning rate parameter of 6×10-3; the difference for the 

parameter of 2×10-4 is the second. The actual output 

value differs the most from the desired output value for 

the parameter of 2×10-2, so 6×10-3 is more accurate. We 

further verified the optimal learning rate parameters by 

comparing the loss function values of the three learning 

rate parameters. 

Figure 8:Loss function values with various learning 

parameters 

5. Conclusion  

In this paper, we use the Faster R-CNN algorithm for 

ship detection recognition and adjust the parameters on 

the original basis to achieve the best recognition effect. 

The first learning rate parameter selection can be used to 

roughly determine the detection accuracy of the picture 

based on visual observation. If the image is easier to 

detect, the learning rate parameter is significant, the step 

length is long, and the detection is faster, and vice versa, 

a smaller learning rate needs to be selected. By testing 

different learning rates, observing the confidence and 

loss function values of the test results, and adjusting the 

size of the learning rate according to the size of the 

difference, we find the learning rate with the best test 

results. The experiment results show that the model has 

the highest confidence and the strongest robustness 

when the learning rate parameter is 6×10-3, and 6×10-3 is 

analytically selected as the optimal parameter to adapt 

the network model to this dataset. 
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