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Abstract  

Efficiently detecting the nearest navigational dangers in Electronic Chart Display and Information Systems 

(ECDIS) remains pivotal for maritime safety. However, the software implementation of ADMAR(Automatic 

Distance measurement and Ranging) functionality faced challenges, necessitating extensive computations across 

ENC cells and impacting real-time performance. To address this, we present a novel method employing dynamic 

programming. Our proposed algorithm strategically organizes nodes into a tree structure, optimizing the search 

process towards nodes likely to contain navigational hazards. Implementation of this method resulted in a notable 

sevenfold reduction in computation time compared to the conventional Brute Force approach. Our study 

established a direct correlation between the ADMAR functionality and node count, achieving error margins 

deemed acceptable for practical navigation scenarios. Despite this theoretical progress, minor errors in results 

prompt further refinement. Consequently, future iterations will explore varying values for N, considering 

hierarchy and cell sizes to enhance algorithmic precision. This research signifies a potential advancement in 

optimizing navigational danger detection within ECDIS, offering a promising avenue for improved efficiency. 

By introducing a dynamic programming-based approach, we have streamlined the detection process while 

acknowledging the scope for algorithmic refinement in subsequent studies. Our findings underline the feasibility 

of employing dynamic programming to enhance navigational danger detection, emphasizing its potential in 

ensuring maritime safety. This work lays a foundation for future research endeavors, aiming to fine-tune 

algorithms and advance navigational safety measures in ECDIS. 
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1. Introduction  

In the realm of Electronic Chart Display and 

Information Systems (ECDIS), the quest for precise 

navigational danger detection has led to an exploration 

of methodologies, including the application of a Brute 

Force algorithmic approach (Weintrit A. 2002). While 

traditional Brute Force algorithms entail exhaustive 

computations by checking all possible solutions, in the 

context of ECDIS, a semblance of this method involves 

a systematic examination of potential hazards in 

navigational paths. 

Notably, within the realm of navigational hazard 

detection, the Brute Force method has retained 

significance as a benchmark for accuracy. This approach, 

outlined by Garcia and team (2006), involves exhaustive 

and systematic examination of all possible scenarios to 

determine the nearest navigational danger. Despite its 

computational intensity, the Brute Force method has 

been widely accepted as a ground truth for evaluating 

the accuracy of alternative algorithms due to its 

comprehensive nature. 

While the Brute Force method remains a reliable 

benchmark, its computational demands often hinder 

real-time application within ECDIS. Consequently, 

recent research efforts, such as those by Wang and Liu 

(2018), have aimed at developing more efficient 

algorithms capable of approaching the accuracy of Brute 

Force while significantly reducing computational load, 

thus enabling practical real-time implementation. 

In the context of ECDIS, navigational hazards can 

encompass various elements that pose risks or threats to 

safe navigation. Some common navigational hazards 

within this context might include shoals and underwater 

obstructions, reefs and coral, wrecks and derelicts, 

channels and fairways, icebergs or ice floes, offshore 

installations and other navigationally significant features 

such as lighthouses, buoys, beacons, or landmarks 

critical for navigation but could pose risks if inaccurately 

represented on charts. 

These hazards need to be accurately detected, 

identified, and represented in ECDIS to ensure the safety 

of maritime navigation. Detecting and managing these 

hazards play a vital role in preventing accidents or 

collisions and ensuring safe passage for vessels. 

Each type of hazard might demand a specific 

approach for detection, affecting the time required and 

the accuracy achieved. Some hazards may be more 

straightforward to detect accurately and quickly, while 

others might require more complex or time-consuming 

methods due to their nature or location. Therefore, 

considering the diversity of hazards, the detection 

methods, time, and accuracy levels could differ 

significantly across various categories within ECDIS. 

This research paper delves into the innovative 

adaptation of a Brute Force-like algorithm for detecting 

the nearest navigational dangers within ECDIS. The 

concept involves a systematic analysis of navigational 

routes or areas by evaluating all potential hazards within 

the vicinity, akin to a methodical grid-based examination 

or iterative analysis along the vessel's intended path. 

However, the utilization of a Brute Force-like 

approach in ECDIS for navigational danger detection 

presents inherent challenges. Its computational intensity 

poses concerns regarding efficiency and scalability, 

particularly in managing vast maritime areas and 

dynamically evolving environments. Despite these 

challenges, the concept represents an intriguing avenue 

for refining navigational safety mechanisms within 

ECDIS. 

Therefore, to address this, we propose a method for 

detecting the nearest navigational danger that suits the 

data structure of S-57-based ENC. The proposed 

algorithm involves pre-stratifying the data structure of 

ENC using dynamic programming, thereby reducing the 

number of ENC data nodes that need to be searched 

(Weintrit A. 2002). 

 

2. The Analysis of Navigational Danger Detection 

in ENC  

The ECDIS highlights in new ways four features that 

are important for safe navigation: 

• The own-ship safety contour, 

• Depth zone shades, 

• The own-ship safety depth, 

• Isolated dangers. 

The own-ship safety contour is the contour related to 

the own ship selected by the mariner out of the contours 

provided for in the SENC (System Electronic 

Navigational Chart), to be used by ECDIS to distinguish 

on the display between the safe and the unsafe water, 
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and for generating anti-grounding alarms. The usability 

of such ECDIS for displaying the nearest navigational 

danger depends on the performance of the hardware 

system where the ECDIS is installed and the time 

complexity of the algorithms embedded in the ECDIS 

software kernel. Especially considering that the 

performance of device-specific hardware is fixed, with 

the recent trend of ECDIS functionalities transitioning to 

mobile devices, it's essential to be able to run software 

for detecting the nearest navigational danger on 

hardware with lower capabilities than before. 

2.1. Data Structure of S-57 ENC 

Within the ENC, contour lines consist of a list of vector 

nodes at the same depth, as depicted in Figure 1. 

 

Figure 1. Contour lines vector node data structure in ENC 

 

2.2. ADMAR 

ADMAR (Automatic Distance Measurement and 

Ranging) is a specialized feature of ECDIS that 

continuously displays the distance to the nearest 

navigational danger automatically, as illustrated in Figure 

2. 

 

 

Figure 2, Example of Distance Measurement Function on Mapsea Navigation 

 

To implement a functionality similar to Figure 2 

within the software, it involves finding the list of 

nodes from the contour lines deeper than the vessel's 

Safety contour, and then identifying the specific node 

closest to the vessel among this node list. 

 

 

 

Figure 3. Implementation of ADMAR Functionality in 

ENC Data Structure 

For instance, for a vessel with a safety contour of 24, 

in an environment similar to Figure 3, the process 

involves finding the list of contour line nodes at depth 

30 that are greater than 24. From this node list, the 

node closest to the vessel is identified. 

In traditional ECDIS systems, locating the node 

closest to the vessel within a specific node list 

involved using a brute force method, necessitating a 

search through all node lists at a particular depth 

within the ENC cell. This conventional approach 

incurred significant time complexity as it 

unnecessarily searched through all nodes, highlighting 

the need to reduce this complexity. 

 

3. Optimal Algorithm for Nearest Navigational 

Danger Detection  

We propose an algorithm utilizing dynamic 

programming, which recursively and hierarchically 

groups nodes within each node list in the ENC. This 

algorithm averages coordinates of proximate nodes in a 
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certain quantity. 

3.1. Hierarchical Aggregation Procedure  

The proposed algorithm incorporates a specific 

positive integer N as an aggregation hyperparameter, 

which determines the pre-processing procedure involving 

averaging nodes hierarchically in N increments. 

Additionally, the number of aggregation levels (L), 

representing the recursive aggregation iterations, also 

serves as a hyperparameter. 

For example, aggregating ENC data similar to Figure 

1 with N=3, L=2 would result in data aggregated in a 

tree-like structure for each level, as illustrated in Figure 4. 

 

Figure 4 Example of Hierarchical ENC Node Aggregation 

Method Using Dynamic Programming 

 

The above procedure can be summarized into 

pseudocode as follows: 

 

Pseudocode 1. Pre-processing Procedure 

for (int l = 0; l < L; l++)//Loop 1 

for (ArrayList<Point2D> arrayList : 

DPLayer[l]) {//Loop 2 

ArrayList<Point2D> innerList = new 

ArrayList<Point2D>(); 

int dplength = arrayList.size() / N; 

for(int ii = 0; ii < dplength; ii++)//Loop 3 

{ 

double averx = 0; 

double avery = 0; 

for(int jj = 0; jj < N; jj++)//Loop 4 

{ 

averx += arrayList.get(ii * N + jj).x; 

avery += arrayList.get(ii * N + jj).y; 

} 

averx /= N; 

avery /= N; 

Point2D ptPoint2d = new Point2D(); 

ptPoint2d.x = averx; 

ptPoint2d.y = avery; 

innerList.add(ptPoint2d); 

} 

double averx2 = 0; 

double avery2 = 0; 

for(int jj2 = dplength * N; jj2 < 

arrayList.size(); jj2++)//Loop 5 

{ 

averx2 += arrayList.get(jj2).x; 

avery2 += arrayList.get(jj2).y; 

} 

averx2 /= arrayList.size() - dplength * N; 

avery2 /= arrayList.size() - dplength * N; 

Point2D ptPoint2d2 = new Point2D(); 

ptPoint2d2.x = averx2; 

ptPoint2d2.y = avery2; 

if(averx2 != 0.0 && avery2 != 0.0 

&& !Double.isNaN(averx2) 

&& !Double.isNaN(avery2)) 

{ 

innerList.add(ptPoint2d2); 

} 

DPLayer[l + 1].add(innerList); 

} 

 

The first loop, Loop 1, in Pseudocode 1 is an 

iteration based on the recursive hierarchy constant L. 

This means it aggregates from lower to higher levels 

for each hierarchy. The subsequent loop, Loop 2, 
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iterates through the list of lists of nodes in the ENC 

data structure. This loop identifies a specific node list. 

Subsequently, it computes the new length (dplength) 

for the upper level by dividing the number of nodes in 

the current hierarchy node list by N. Loops 3, 4, and 5 

iterate through this new length, calculating the average 

of N adjacent nodes in the lower hierarchy and storing 

the result in the upper hierarchy. 

3.2. Search Procedure  

The real-time search procedure used in ECDIS 

software reverses the pre-processing procedure of 3-1. It 

involves searching through all the top layers and 

recursively searching only nodes belonging to the lower 

hierarchy of nodes already searched, which are the 

shortest distance nodes from the vessel. 

Utilizing the dynamically computed hierarchical 

structure as depicted in Figure 4, to determine the 

nearest navigational danger to the vessel shown in 

Figure 3, it follows a search range and procedure similar 

to Figure 5. 

 

Figure 5 Example of Search Procedure from Dynamic 

Programming-based ENC Node Aggregation Data 

 

In the case of Figure 3, it was necessary to explore 

all 43 nodes at depth 30. However, in Figure 5, it can 

be observed that only a total of 11 nodes were 

explored to identify the nearest navigational danger. 

The above procedure can be summarized into 

pseudocode as follows: 

 

Pseudocode 2. Real-time Search Procedure 

int outerIdx = -1; 

int innerIdx = -1; 

double minDist = Double.MAX_VALUE; 

for (int idp = 0; idp < DPLayer[L-1].size(); 

idp++) {//Loop 1 

for(int jdp = 0; jdp < DPLayer[L-

1].get(idp).size(); jdp++)//Loop 2 

{ 

double dist = eucDist(MyVessel.x, 

MyVessel.y, DPLayer[L-

1].get(idp).get(jdp).x, DPLayer[L-

1].get(idp).get(jdp).y); 

if(dist <= minDist) 

{ 

minDist = dist; 

outerIdx = idp; 

innerIdx = jdp; 

} 

} 

} 

for(int l = L-2; l > -1; l--)//Loop 3 

{ 

minDist = Double.MAX_VALUE; 

int innerIdx2 = -1; 

for(int ii = 0; ii < N; ii++)//Loop 4 

{ 

double dist = eucDist(MyVessel.x, 

MyVessel.y, 

DPLayer[l].get(outerIdx).get(innerIdx * N + 

ii).x, DPLayer[l].get(outerIdx).get(innerIdx * 

N + ii).y); 

if(dist <= minDist) 

{ 

minDist = dist; 

innerIdx2 = innerIdx * DPDivider + ii; 

} 

} 

innerIdx = innerIdx2; 
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if(l == 0)//If-clause 1 

{ 

print(DPLayer[l].get(outerIdx).get(innerIdx).x, 

DPLayer[l].get(outerIdx).get(innerIdx).y)) 

} 

} 

Loop 1 in Pseudocode 2 extracts the list of nodes 

from each list of node lists in the ENC data structure 

that contains the node belonging to the shortest 

distance. Loop 2 extracts nodes from the list of top-

level nodes that represent the shortest distance. Loop 3 

traverses the remaining levels, excluding the top-level, 

and Loop 4 iterates through nodes that are likely to 

contain the shortest distance nodes in the tree structure. 

After going through these procedures, finally, If-clause 

1 outputs the nearest navigational danger. 

 

4. Application and Validation of Algorithm  

4.1. Validation Environment  

We conducted experiment using S-57 Electronic 

Navigational Charts (ENCs) of US waters provided by 

NOAA 

(https://www.charts.noaa.gov/ENCs/ENCs.shtml). Our 

experiment was based on coastal lines, the boundaries 

between sea and land, to maintain node consistency 

concerning the safety contour. We utilized 1,162 ENC 

files out of a total of 2,540 ENCs provided by NOAA 

that contained coastal lines. The vessel's positions were 

randomly selected—10,000 points within each cell size 

of the ENC files, ensuring they fell within the sea points. 

Hence, we computed the nearest navigational danger for 

a total of 11,620,000 vessel positions. 

We experimented with different hyperparameters for 

the dynamic programming approach, using aggregation 

units N as 2, 3, 4, and 5. The total number of aggregation 

levels L was fixed at 3 for consistency. Additionally, we 

implemented and experimented with the traditional 

Brute Force algorithm. 

The hardware environment for the validation 

processes was as follows. 

In Table 3, the average processing times for each 

algorithm are presented. Overall, it is evident that the 

proposed algorithm significantly outperforms the Brute 

Force method, especially noting that the case where N 

equals 3 demonstrates the fastest performance. Based on 

the average processing time, it seems that the Brute 

Force algorithm could run smoothly in real-time on both 

desktop and mobile environments, indicating a less 

pressing need for the proposed algorithm. However, in 

the actual execution environment of ECDIS, where 

multiple ENC cells overlap, measuring the nearest 

navigational danger from various points of the vessel, 

the ideal conditions depicted in Table 3 may not persist 

consistently. 

 

Table 1. Hardware Environment 

CPU Core Thread 
Max. CPU 

Clock  

Types of 

RAM 

RAM 

Capacity 
RAM Clock 

intel i5-

12400f 
6 12 4.4GHz DDR4 16.0GB 

1600MHz(dual 

channel) 

 

The validation software environment is as follows.  

Table 2. Software Environment 

Program 

Language 
IDE ENC SDK 

JAVA 
Eclipse IDE 

2022-09 
JOSM(https://github.com/JOSM)[10] 
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Table 3. Average processing time 

Algorithm BF DP(N=2) DP(N=3) DP(N=4) DP(N=5) 

Average 

Processing 

Time(ms) 

0.0242 0.0072 0.0035 0.0036 0.0047 

 

  

Table 4. Top 10 Node Count Processing Times 

Algorithm BF DP(N=2) DP(N=3) DP(N=4) DP(N=5) 

Node 

Count 

72,320 

Processing 

Time 

0.4523 0.0860 0.0342 0.0208 0.0148 

64,389 0.4183 0.0852 0.0332 0.0224 0.0206 

63,987 0.3886 0.0797 0.0302 0.0185 0.0150 

61,338 0.4054 0.0969 0.0419 0.0279 0.0269 

60,402 0.3666 0.0786 0.0299 0.0181 0.0167 

60,198 0.3921 0.0826 0.0334 0.0267 0.0202 

59,556 0.2576 0.0663 0.0225 0.0134 0.0102 

58,608 0.3225 0.0669 0.0252 0.0150 0.0127 

53,688 0.1638 0.0680 0.0277 0.0176 0.0149 

52,225 0.2862 0.0584 0.0198 0.0123 0.0103 

4.2. Validation Results 

I n Table 4, we compiled ten examples where the node 

count reaches tens of thousands. Comparing these 

examples with Figure 6, it becomes evident that as the 

node count increases, the computational load of the 

Brute Force algorithm escalates linearly, emphasizing 

the growing necessity for the proposed algorithm 

 

Figure 6. Changes in Processing Time with Node Count 
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In Figure 6, the graph illustrates the change in 

processing time for each algorithm concerning the 

node count. According to this graph, while the 

proposed algorithm is faster than the Brute Force 

method, both exhibit a linear complexity of O(C) 

concerning the number of nodes (C). 

Table 5. Average Preprocessing Time 

N 2 3 4 5 

Average 

Preprocessing 

Time 

(ms) 

2.319 2.304 2.356 2.343 

 

In Table 5, we can observe the processing time 

required for the preprocessing steps utilizing dynamic 

programming in the proposed algorithm. It indicates a 

minimal time requirement in the millisecond range for 

each cell. Additionally, as this computation occurs 

during the installation of ENC cells rather than in real-

time, in terms of computational load, it does not 

translate to a significant noticeable time for the use 

 

Table 6. Average Error 

N 2 3 4 5 

Average 

Error 

(km) 

0.0719 0.1632 0.2544 0.3325 

 

In Table 6, the average error in kilometers is 

presented. This error, measured in kilometers, is 

calculated using Brute Force as the ground truth and 

determining the Euclidean distance, in kilometers, 

between the actual nearest navigational danger and the 

result obtained from the proposed algorithm. 

According to Table 6, even in the best-case scenario 

with N equal to 2, there is a significant error, 

averaging 0.0718 kilometers or 71.8 meters. This 

could pose issues for practical navigation purposes. 

However, these values are presented without 

considering the size of the ENC cells. Table 7 outlines 

errors based on the diagonal length of the chart, 

providing a perspective considering chart size, and 

Table 8 summarizes the error rate based on the 

diagonal size of the ENC cells. 

 

Table 7. Top and Bottom 10 Average Errors based on Chart Diagonal Length 

Top 10 DP(N=2) DP(N=3) DP(N=4) DP(N=5) 

Diagonal 

Length 

(km) 

3,344 

Average 

Error 

(km) 

7.686 17.484 27.190 28.126 

3,036 0.241 0.263 0.409 0.308 

2,674 2.228 3.473 5.557 5.879 

2,445 1.979 6.032 5.801 7.204 

1,582 1.004 1.788 2.838 2.848 

1,356 1.224 4.353 7.530 12.294 

1,335 0.849 1.430 1.461 1.293 

1,313 0.430 0.806 1.139 1.072 

872 1.155 1.991 2.847 3.837 

718 0.058 0.565 0.813 0.971 

Bottom 10 DP(N=2) DP(N=3) DP(N=4) DP(N=5) 
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Diagonal 

Length 

(km) 

0.1940 

Average 

Error 

(km) 

0.0080 0.0020 0.0060 0.0107 

0.1428 0 0 0 0 

0.1182 0.0066 0.0085 0.0059 0.0032 

0.0835 0.0048 0.0030 0.0045 0.0026 

0.0814 0.0053 0.0020 0.0051 0.0064 

0.0607 0.0030 0.0006 0.0017 0.0010 

0.0566 0.0038 0.0042 0.0015 0.0027 

0.0548 0.0004 0.0035 0 0 

0.0221 0.0003 0.0007 0 0 

0.0182 0.0008 0 0 0 

 

Table 8. Average Error Rate 

N 2 3 4 5 

Average 

Error 

Rate(%) 

0.0051 0.0090 0.0127 0.0154 

 

According to Tables 7 and 8, the error relative to the 

ENC cell size at N equals 2 is approximately 0.51%. 

This indicates that for ENC cell sizes within 1 

kilometer, the error is at a level of a few meters, which 

might not pose significant navigational issues. 

Upon consolidating all the results, it became 

apparent that, in terms of speed, the proposed 

algorithm outperforms the Brute Force algorithm. 

Furthermore, to minimize error rates, N equals 2 

appears favorable, while for increasing processing 

speed, N equals 3 seems to be the optimal choice. 

 

5. Conclusions  

With advancements in technology, the ADMAR 

functionality for detecting the nearest navigational 

danger in ECDIS has become a crucial aid for 

navigators. However, executing the ADMAR 

functionality in software posed a challenge, requiring 

unnecessary exploration of tens of thousands of points 

on ENC cells. This issue demanded a significant 

portion of real-time computation performance from 

ECDIS to resolve.  

To address this, we proposed a novel method of 

detecting the nearest navigational danger using 

dynamic programming. Our algorithm involves 

bundling nodes into unit quantities to create a tree 

structure, allowing for a search procedure that focuses 

on nodes likely to contain the nearest navigational 

danger.  

By employing this proposed algorithm, we achieved 

a sevenfold reduction in time compared to the 

previous Brute Force method for identifying the 

nearest navigational danger. Furthermore, we 

demonstrated that the functionality of ADMAR 

correlates linearly with the number of nodes. 

Additionally, we analyzed the error rate of our 

proposed method, showing errors within acceptable 

margins for practical navigation scenarios. 

However, considering some level of errors in the 

proposed algorithm's results, there is a need for 

improvement in future iterations. We plan to conduct 

further research by applying different values for N 

based on hierarchy and cell sizes to refine the 

algorithm. 
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