
International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052

Available online at http://www.e-navigation.kr/

e-Navigation Journal

Original article

Building of an Optimal Algorithm for Nearest Navigational Danger Detection in ENC

using DP☆

Jisoo KIMa, Hongrai CHOa, Unggyu KIMa, Byunggong HWANGa

a R&D Center, mapsea Corp., Seoul, Korea

Abstract

Efficiently detecting the nearest navigational dangers in Electronic Chart Display and Information Systems

(ECDIS) remains pivotal for maritime safety. However, the software implementation of ADMAR(Automatic

Distance measurement and Ranging) functionality faced challenges, necessitating extensive computations across

ENC cells and impacting real-time performance. To address this, we present a novel method employing dynamic

programming. Our proposed algorithm strategically organizes nodes into a tree structure, optimizing the search

process towards nodes likely to contain navigational hazards. Implementation of this method resulted in a notable

sevenfold reduction in computation time compared to the conventional Brute Force approach. Our study

established a direct correlation between the ADMAR functionality and node count, achieving error margins

deemed acceptable for practical navigation scenarios. Despite this theoretical progress, minor errors in results

prompt further refinement. Consequently, future iterations will explore varying values for N, considering

hierarchy and cell sizes to enhance algorithmic precision. This research signifies a potential advancement in

optimizing navigational danger detection within ECDIS, offering a promising avenue for improved efficiency.

By introducing a dynamic programming-based approach, we have streamlined the detection process while

acknowledging the scope for algorithmic refinement in subsequent studies. Our findings underline the feasibility

of employing dynamic programming to enhance navigational danger detection, emphasizing its potential in

ensuring maritime safety. This work lays a foundation for future research endeavors, aiming to fine-tune

algorithms and advance navigational safety measures in ECDIS.

Keywords: Nearest Navigational Danger, ADMAR, ENC, ECDIS, Brute Force, SENC, Dynamic Programming

☆(Do not DELETE)

Copyright ⓒ 2017, International Association of e-Navigation and Ocean Economy.

This article is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer review under responsibility of Korea Advanced Institute for International Association of e-Navigation and Ocean

Economy

https://doi.org/10.52820/j.enavi.2023.21.043

http://www.e-navigation.kr/

44 Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052

1. Introduction

In the realm of Electronic Chart Display and

Information Systems (ECDIS), the quest for precise

navigational danger detection has led to an exploration

of methodologies, including the application of a Brute

Force algorithmic approach (Weintrit A. 2002). While

traditional Brute Force algorithms entail exhaustive

computations by checking all possible solutions, in the

context of ECDIS, a semblance of this method involves

a systematic examination of potential hazards in

navigational paths.

Notably, within the realm of navigational hazard

detection, the Brute Force method has retained

significance as a benchmark for accuracy. This approach,

outlined by Garcia and team (2006), involves exhaustive

and systematic examination of all possible scenarios to

determine the nearest navigational danger. Despite its

computational intensity, the Brute Force method has

been widely accepted as a ground truth for evaluating

the accuracy of alternative algorithms due to its

comprehensive nature.

While the Brute Force method remains a reliable

benchmark, its computational demands often hinder

real-time application within ECDIS. Consequently,

recent research efforts, such as those by Wang and Liu

(2018), have aimed at developing more efficient

algorithms capable of approaching the accuracy of Brute

Force while significantly reducing computational load,

thus enabling practical real-time implementation.

In the context of ECDIS, navigational hazards can

encompass various elements that pose risks or threats to

safe navigation. Some common navigational hazards

within this context might include shoals and underwater

obstructions, reefs and coral, wrecks and derelicts,

channels and fairways, icebergs or ice floes, offshore

installations and other navigationally significant features

such as lighthouses, buoys, beacons, or landmarks

critical for navigation but could pose risks if inaccurately

represented on charts.

These hazards need to be accurately detected,

identified, and represented in ECDIS to ensure the safety

of maritime navigation. Detecting and managing these

hazards play a vital role in preventing accidents or

collisions and ensuring safe passage for vessels.

Each type of hazard might demand a specific

approach for detection, affecting the time required and

the accuracy achieved. Some hazards may be more

straightforward to detect accurately and quickly, while

others might require more complex or time-consuming

methods due to their nature or location. Therefore,

considering the diversity of hazards, the detection

methods, time, and accuracy levels could differ

significantly across various categories within ECDIS.

This research paper delves into the innovative

adaptation of a Brute Force-like algorithm for detecting

the nearest navigational dangers within ECDIS. The

concept involves a systematic analysis of navigational

routes or areas by evaluating all potential hazards within

the vicinity, akin to a methodical grid-based examination

or iterative analysis along the vessel's intended path.

However, the utilization of a Brute Force-like

approach in ECDIS for navigational danger detection

presents inherent challenges. Its computational intensity

poses concerns regarding efficiency and scalability,

particularly in managing vast maritime areas and

dynamically evolving environments. Despite these

challenges, the concept represents an intriguing avenue

for refining navigational safety mechanisms within

ECDIS.

Therefore, to address this, we propose a method for

detecting the nearest navigational danger that suits the

data structure of S-57-based ENC. The proposed

algorithm involves pre-stratifying the data structure of

ENC using dynamic programming, thereby reducing the

number of ENC data nodes that need to be searched

(Weintrit A. 2002).

2. The Analysis of Navigational Danger Detection

in ENC

The ECDIS highlights in new ways four features that

are important for safe navigation:

• The own-ship safety contour,

• Depth zone shades,

• The own-ship safety depth,

• Isolated dangers.

The own-ship safety contour is the contour related to

the own ship selected by the mariner out of the contours

provided for in the SENC (System Electronic

Navigational Chart), to be used by ECDIS to distinguish

on the display between the safe and the unsafe water,

Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052 45

and for generating anti-grounding alarms. The usability

of such ECDIS for displaying the nearest navigational

danger depends on the performance of the hardware

system where the ECDIS is installed and the time

complexity of the algorithms embedded in the ECDIS

software kernel. Especially considering that the

performance of device-specific hardware is fixed, with

the recent trend of ECDIS functionalities transitioning to

mobile devices, it's essential to be able to run software

for detecting the nearest navigational danger on

hardware with lower capabilities than before.

2.1. Data Structure of S-57 ENC

Within the ENC, contour lines consist of a list of vector

nodes at the same depth, as depicted in Figure 1.

Figure 1. Contour lines vector node data structure in ENC

2.2. ADMAR

ADMAR (Automatic Distance Measurement and

Ranging) is a specialized feature of ECDIS that

continuously displays the distance to the nearest

navigational danger automatically, as illustrated in Figure

2.

Figure 2, Example of Distance Measurement Function on Mapsea Navigation

To implement a functionality similar to Figure 2

within the software, it involves finding the list of

nodes from the contour lines deeper than the vessel's

Safety contour, and then identifying the specific node

closest to the vessel among this node list.

Figure 3. Implementation of ADMAR Functionality in

ENC Data Structure

For instance, for a vessel with a safety contour of 24,

in an environment similar to Figure 3, the process

involves finding the list of contour line nodes at depth

30 that are greater than 24. From this node list, the

node closest to the vessel is identified.

In traditional ECDIS systems, locating the node

closest to the vessel within a specific node list

involved using a brute force method, necessitating a

search through all node lists at a particular depth

within the ENC cell. This conventional approach

incurred significant time complexity as it

unnecessarily searched through all nodes, highlighting

the need to reduce this complexity.

3. Optimal Algorithm for Nearest Navigational

Danger Detection

We propose an algorithm utilizing dynamic

programming, which recursively and hierarchically

groups nodes within each node list in the ENC. This

algorithm averages coordinates of proximate nodes in a

46 Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052

certain quantity.

3.1. Hierarchical Aggregation Procedure

The proposed algorithm incorporates a specific

positive integer N as an aggregation hyperparameter,

which determines the pre-processing procedure involving

averaging nodes hierarchically in N increments.

Additionally, the number of aggregation levels (L),

representing the recursive aggregation iterations, also

serves as a hyperparameter.

For example, aggregating ENC data similar to Figure

1 with N=3, L=2 would result in data aggregated in a

tree-like structure for each level, as illustrated in Figure 4.

Figure 4 Example of Hierarchical ENC Node Aggregation

Method Using Dynamic Programming

The above procedure can be summarized into

pseudocode as follows:

Pseudocode 1. Pre-processing Procedure

for (int l = 0; l < L; l++)//Loop 1

for (ArrayList<Point2D> arrayList :

DPLayer[l]) {//Loop 2

ArrayList<Point2D> innerList = new

ArrayList<Point2D>();

int dplength = arrayList.size() / N;

for(int ii = 0; ii < dplength; ii++)//Loop 3

{

double averx = 0;

double avery = 0;

for(int jj = 0; jj < N; jj++)//Loop 4

{

averx += arrayList.get(ii * N + jj).x;

avery += arrayList.get(ii * N + jj).y;

}

averx /= N;

avery /= N;

Point2D ptPoint2d = new Point2D();

ptPoint2d.x = averx;

ptPoint2d.y = avery;

innerList.add(ptPoint2d);

}

double averx2 = 0;

double avery2 = 0;

for(int jj2 = dplength * N; jj2 <

arrayList.size(); jj2++)//Loop 5

{

averx2 += arrayList.get(jj2).x;

avery2 += arrayList.get(jj2).y;

}

averx2 /= arrayList.size() - dplength * N;

avery2 /= arrayList.size() - dplength * N;

Point2D ptPoint2d2 = new Point2D();

ptPoint2d2.x = averx2;

ptPoint2d2.y = avery2;

if(averx2 != 0.0 && avery2 != 0.0

&& !Double.isNaN(averx2)

&& !Double.isNaN(avery2))

{

innerList.add(ptPoint2d2);

}

DPLayer[l + 1].add(innerList);

}

The first loop, Loop 1, in Pseudocode 1 is an

iteration based on the recursive hierarchy constant L.

This means it aggregates from lower to higher levels

for each hierarchy. The subsequent loop, Loop 2,

Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052 47

iterates through the list of lists of nodes in the ENC

data structure. This loop identifies a specific node list.

Subsequently, it computes the new length (dplength)

for the upper level by dividing the number of nodes in

the current hierarchy node list by N. Loops 3, 4, and 5

iterate through this new length, calculating the average

of N adjacent nodes in the lower hierarchy and storing

the result in the upper hierarchy.

3.2. Search Procedure

The real-time search procedure used in ECDIS

software reverses the pre-processing procedure of 3-1. It

involves searching through all the top layers and

recursively searching only nodes belonging to the lower

hierarchy of nodes already searched, which are the

shortest distance nodes from the vessel.

Utilizing the dynamically computed hierarchical

structure as depicted in Figure 4, to determine the

nearest navigational danger to the vessel shown in

Figure 3, it follows a search range and procedure similar

to Figure 5.

Figure 5 Example of Search Procedure from Dynamic

Programming-based ENC Node Aggregation Data

In the case of Figure 3, it was necessary to explore

all 43 nodes at depth 30. However, in Figure 5, it can

be observed that only a total of 11 nodes were

explored to identify the nearest navigational danger.

The above procedure can be summarized into

pseudocode as follows:

Pseudocode 2. Real-time Search Procedure

int outerIdx = -1;

int innerIdx = -1;

double minDist = Double.MAX_VALUE;

for (int idp = 0; idp < DPLayer[L-1].size();

idp++) {//Loop 1

for(int jdp = 0; jdp < DPLayer[L-

1].get(idp).size(); jdp++)//Loop 2

{

double dist = eucDist(MyVessel.x,

MyVessel.y, DPLayer[L-

1].get(idp).get(jdp).x, DPLayer[L-

1].get(idp).get(jdp).y);

if(dist <= minDist)

{

minDist = dist;

outerIdx = idp;

innerIdx = jdp;

}

}

}

for(int l = L-2; l > -1; l--)//Loop 3

{

minDist = Double.MAX_VALUE;

int innerIdx2 = -1;

for(int ii = 0; ii < N; ii++)//Loop 4

{

double dist = eucDist(MyVessel.x,

MyVessel.y,

DPLayer[l].get(outerIdx).get(innerIdx * N +

ii).x, DPLayer[l].get(outerIdx).get(innerIdx *

N + ii).y);

if(dist <= minDist)

{

minDist = dist;

innerIdx2 = innerIdx * DPDivider + ii;

}

}

innerIdx = innerIdx2;

48 Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052

if(l == 0)//If-clause 1

{

print(DPLayer[l].get(outerIdx).get(innerIdx).x,

DPLayer[l].get(outerIdx).get(innerIdx).y))

}

}

Loop 1 in Pseudocode 2 extracts the list of nodes

from each list of node lists in the ENC data structure

that contains the node belonging to the shortest

distance. Loop 2 extracts nodes from the list of top-

level nodes that represent the shortest distance. Loop 3

traverses the remaining levels, excluding the top-level,

and Loop 4 iterates through nodes that are likely to

contain the shortest distance nodes in the tree structure.

After going through these procedures, finally, If-clause

1 outputs the nearest navigational danger.

4. Application and Validation of Algorithm

4.1. Validation Environment

We conducted experiment using S-57 Electronic

Navigational Charts (ENCs) of US waters provided by

NOAA

(https://www.charts.noaa.gov/ENCs/ENCs.shtml). Our

experiment was based on coastal lines, the boundaries

between sea and land, to maintain node consistency

concerning the safety contour. We utilized 1,162 ENC

files out of a total of 2,540 ENCs provided by NOAA

that contained coastal lines. The vessel's positions were

randomly selected—10,000 points within each cell size

of the ENC files, ensuring they fell within the sea points.

Hence, we computed the nearest navigational danger for

a total of 11,620,000 vessel positions.

We experimented with different hyperparameters for

the dynamic programming approach, using aggregation

units N as 2, 3, 4, and 5. The total number of aggregation

levels L was fixed at 3 for consistency. Additionally, we

implemented and experimented with the traditional

Brute Force algorithm.

The hardware environment for the validation

processes was as follows.

In Table 3, the average processing times for each

algorithm are presented. Overall, it is evident that the

proposed algorithm significantly outperforms the Brute

Force method, especially noting that the case where N

equals 3 demonstrates the fastest performance. Based on

the average processing time, it seems that the Brute

Force algorithm could run smoothly in real-time on both

desktop and mobile environments, indicating a less

pressing need for the proposed algorithm. However, in

the actual execution environment of ECDIS, where

multiple ENC cells overlap, measuring the nearest

navigational danger from various points of the vessel,

the ideal conditions depicted in Table 3 may not persist

consistently.

Table 1. Hardware Environment

CPU Core Thread
Max. CPU

Clock

Types of

RAM

RAM

Capacity
RAM Clock

intel i5-

12400f
6 12 4.4GHz DDR4 16.0GB

1600MHz(dual

channel)

The validation software environment is as follows.

Table 2. Software Environment

Program

Language
IDE ENC SDK

JAVA
Eclipse IDE

2022-09
JOSM(https://github.com/JOSM)[10]

Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052 49

Table 3. Average processing time

Algorithm BF DP(N=2) DP(N=3) DP(N=4) DP(N=5)

Average

Processing

Time(ms)

0.0242 0.0072 0.0035 0.0036 0.0047

Table 4. Top 10 Node Count Processing Times

Algorithm BF DP(N=2) DP(N=3) DP(N=4) DP(N=5)

Node

Count

72,320

Processing

Time

0.4523 0.0860 0.0342 0.0208 0.0148

64,389 0.4183 0.0852 0.0332 0.0224 0.0206

63,987 0.3886 0.0797 0.0302 0.0185 0.0150

61,338 0.4054 0.0969 0.0419 0.0279 0.0269

60,402 0.3666 0.0786 0.0299 0.0181 0.0167

60,198 0.3921 0.0826 0.0334 0.0267 0.0202

59,556 0.2576 0.0663 0.0225 0.0134 0.0102

58,608 0.3225 0.0669 0.0252 0.0150 0.0127

53,688 0.1638 0.0680 0.0277 0.0176 0.0149

52,225 0.2862 0.0584 0.0198 0.0123 0.0103

4.2. Validation Results

I n Table 4, we compiled ten examples where the node

count reaches tens of thousands. Comparing these

examples with Figure 6, it becomes evident that as the

node count increases, the computational load of the

Brute Force algorithm escalates linearly, emphasizing

the growing necessity for the proposed algorithm

Figure 6. Changes in Processing Time with Node Count

Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052 50

In Figure 6, the graph illustrates the change in

processing time for each algorithm concerning the

node count. According to this graph, while the

proposed algorithm is faster than the Brute Force

method, both exhibit a linear complexity of O(C)

concerning the number of nodes (C).

Table 5. Average Preprocessing Time

N 2 3 4 5

Average

Preprocessing

Time

(ms)

2.319 2.304 2.356 2.343

In Table 5, we can observe the processing time

required for the preprocessing steps utilizing dynamic

programming in the proposed algorithm. It indicates a

minimal time requirement in the millisecond range for

each cell. Additionally, as this computation occurs

during the installation of ENC cells rather than in real-

time, in terms of computational load, it does not

translate to a significant noticeable time for the use

Table 6. Average Error

N 2 3 4 5

Average

Error

(km)

0.0719 0.1632 0.2544 0.3325

In Table 6, the average error in kilometers is

presented. This error, measured in kilometers, is

calculated using Brute Force as the ground truth and

determining the Euclidean distance, in kilometers,

between the actual nearest navigational danger and the

result obtained from the proposed algorithm.

According to Table 6, even in the best-case scenario

with N equal to 2, there is a significant error,

averaging 0.0718 kilometers or 71.8 meters. This

could pose issues for practical navigation purposes.

However, these values are presented without

considering the size of the ENC cells. Table 7 outlines

errors based on the diagonal length of the chart,

providing a perspective considering chart size, and

Table 8 summarizes the error rate based on the

diagonal size of the ENC cells.

Table 7. Top and Bottom 10 Average Errors based on Chart Diagonal Length

Top 10 DP(N=2) DP(N=3) DP(N=4) DP(N=5)

Diagonal

Length

(km)

3,344

Average

Error

(km)

7.686 17.484 27.190 28.126

3,036 0.241 0.263 0.409 0.308

2,674 2.228 3.473 5.557 5.879

2,445 1.979 6.032 5.801 7.204

1,582 1.004 1.788 2.838 2.848

1,356 1.224 4.353 7.530 12.294

1,335 0.849 1.430 1.461 1.293

1,313 0.430 0.806 1.139 1.072

872 1.155 1.991 2.847 3.837

718 0.058 0.565 0.813 0.971

Bottom 10 DP(N=2) DP(N=3) DP(N=4) DP(N=5)

Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052 51

Diagonal

Length

(km)

0.1940

Average

Error

(km)

0.0080 0.0020 0.0060 0.0107

0.1428 0 0 0 0

0.1182 0.0066 0.0085 0.0059 0.0032

0.0835 0.0048 0.0030 0.0045 0.0026

0.0814 0.0053 0.0020 0.0051 0.0064

0.0607 0.0030 0.0006 0.0017 0.0010

0.0566 0.0038 0.0042 0.0015 0.0027

0.0548 0.0004 0.0035 0 0

0.0221 0.0003 0.0007 0 0

0.0182 0.0008 0 0 0

Table 8. Average Error Rate

N 2 3 4 5

Average

Error

Rate(%)

0.0051 0.0090 0.0127 0.0154

According to Tables 7 and 8, the error relative to the

ENC cell size at N equals 2 is approximately 0.51%.

This indicates that for ENC cell sizes within 1

kilometer, the error is at a level of a few meters, which

might not pose significant navigational issues.

Upon consolidating all the results, it became

apparent that, in terms of speed, the proposed

algorithm outperforms the Brute Force algorithm.

Furthermore, to minimize error rates, N equals 2

appears favorable, while for increasing processing

speed, N equals 3 seems to be the optimal choice.

5. Conclusions

With advancements in technology, the ADMAR

functionality for detecting the nearest navigational

danger in ECDIS has become a crucial aid for

navigators. However, executing the ADMAR

functionality in software posed a challenge, requiring

unnecessary exploration of tens of thousands of points

on ENC cells. This issue demanded a significant

portion of real-time computation performance from

ECDIS to resolve.

To address this, we proposed a novel method of

detecting the nearest navigational danger using

dynamic programming. Our algorithm involves

bundling nodes into unit quantities to create a tree

structure, allowing for a search procedure that focuses

on nodes likely to contain the nearest navigational

danger.

By employing this proposed algorithm, we achieved

a sevenfold reduction in time compared to the

previous Brute Force method for identifying the

nearest navigational danger. Furthermore, we

demonstrated that the functionality of ADMAR

correlates linearly with the number of nodes.

Additionally, we analyzed the error rate of our

proposed method, showing errors within acceptable

margins for practical navigation scenarios.

However, considering some level of errors in the

proposed algorithm's results, there is a need for

improvement in future iterations. We plan to conduct

further research by applying different values for N

based on hierarchy and cell sizes to refine the

algorithm.

6. Acknowledgement

 This research was supported by the Korean Institute

52 Jisoo KIM et al. / International Journal of e-Navigation and Maritime Economy 21 (2023) 043–052

of Marine Science and Technology Promotion

(KIMST) funded by the Ministry of Oceans and

Fisheries, Korea(20220093 & RS-2023-00254860).

References

Vincent Garcia, Sylvain Boltz, E Debrreuve, Michel Barlaud

(2006), Contour tracking for rotoscoping based on trajectories

of feature points, ECCV Workshop on Statistical Methods in

Multi-Image and Video Processing (SMVP), Graz, Autriche,

France

Rui Liu, Hong Wang, Xiaomei Yu (2018), Shared-nearest-

neighbor-based clustering by fast search and find of density

peaks, Information Sciences Volume 450, June 2018, China

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein (2022), Introduction to Algorithms 4th

Edition, The MIT Press Cambridge, Massachusetts London,

England

A.N.Cockcroft and J.N.F.Lameijer (2012) A Guide to the

Collision Avoidance Rules seventh edition, ScienceDirect

Dimitri P. Bertsekas (2017), Dynamic Programming and

Optimal Control Vol. 1, 4th Edition, Massachusetts Institute of

Technology, USA

Dimitri P. Bertsekas (2022), Abstract Dynamic Programming,

3rd Edition, EBOOK at Google Play, Massachusetts Institutes

of Technology, USA

Weintrit A. (2002), Automatic Measurement of Distance to

the Nearest Navigational Danger in ECDIS, XIII-th

International Scientific and Technical Conference ‘The Part Of

Navigation In Support Of Human Activity On The Sea’, Naval

University of Gdynia

Weintrit A. (2003), Voyage recording in ECDIS. Shipborne

simplified version of Voyage Data Recorders (VDRs) for

existing cargo ships based on potential of ECDIS, 11th IAIN

World Congress ‘Smart Navigation – Systems and Services’,

organised by German Institute of Navigation, International

Association of Institutes of Navigation, Berlin

Kolowrocki K., Weintrit A. (2003), A New ADMAR Unit

Conception in ECDIS, Saferelnet Workshop: Safety and

Reliability in Waterborne Transport. Ship Design and Research

Centre, Gdansk

Bellman. R. (1966), Dynamic Programming. Science,

153(3731), 34-37

Olsen, Alexander Arnfinn. (2022) Core Principles of

Maritime Navigation (p. 62). CRC Press. Kindle Edition.

Weintrit A., Kopacz P. (2004), Safety Contours on Electronic

Navigational Charts, 5th International Symposium ‘Information

on Ships’, ISIS 2004, Hamburg

Adam Weintrit & Piotr Kopacz (2004), The use of Distance

Measurement to the nearest navigational Danger in Riute

Planning, Rout Monitoring and Voyage Recording in ECDIS,

XIVth International Scientific and Technical Conference, The

Part of Navigation in Support of Human Activity on The

SeaAt: Institute of Navigation and Hydrography, Naval

Academy, Gdynia

IHO TRANSFER STANDARD for DIGITAL

HYDROGRAPHIC DATA Edition 3.1 - November 2000

Special Publication No. 57

USA office of Coast Survey website

(https://www.charts.noaa.gov/ENCs/ENCs.shtml)

Java OpenStreetMap Editor (https://github.com/JOSM)

Received 04 December 2023

1st Revised 22 December 2023

2nd Revised 26 December 2023

3rd Revised 27 December 2023

Accepted 27 December 2023

