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Abstract  

Efficient and safe maritime navigation in complex and congested coastal regions requires advanced route 

optimization methods that surpass the limitations of traditional shortest-path algorithms. This study applies Deep 

Q-Network (DQN) and Proximal Policy Optimization (PPO) reinforcement learning (RL) algorithms to generate 

and refine optimal ship routes in East Asian waters, focusing on passages from Shanghai to Busan and Ulsan to 

Daesan. Operating within a grid-based representation of the marine environment and considering constraints such 

as restricted areas and Traffic Separation Schemes (TSS), both DQN and PPO learn policies prioritizing safety and 

operational efficiency. Comparative analyses with actual vessel routes demonstrate that RL-based methods yield 

shorter and safer paths. Among these methods, PPO outperforms DQN, providing more stable and coherent routes. 

Post-processing with the Douglas-Peucker (DP) algorithm further simplifies the paths for practical navigational 

use. The findings underscore the potential of RL in enhancing navigational safety, reducing travel distance, and 

advancing autonomous ship navigation technologies. 
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1. Introduction  

Maritime transportation underpins the global logistics 

network, handling over 90% of international trade 

(UNCTAD, 2020). In particular, East Asia—with major 

ports like Shanghai, Busan, and Singapore—serves as a 

pivotal hub for international shipping but also experiences 

intense traffic congestion and a heightened risk of marine 

accidents. Ensuring navigational safety in such complex 

waterways requires robust route optimization strategies. 

Evidence suggests that heavily trafficked regions, such 

as the Singapore Strait and the East China Sea, face 

elevated collision and grounding rates due to navigational 

complexity and congestion (Kim et al., 2019; IMO, 2021). 

Meeting these challenges demands approaches that not 

only identify efficient routes but also continually assess 

dynamic environmental factors. As Johansen et al. (2016) 

emphasized, route optimization is integral to improving 

safety and efficiency in autonomous vessel operations. It 

includes real-time data—such as water depth, obstacles, 

and TSS—to support decision-making. 

Traditional shortest-path algorithms often fail to 

incorporate essential safety constraints, prompting the 

adoption of reinforcement learning (RL) methods. This 

study applies DQN and PPO to maritime route 

optimization, comparing RL-generated routes against 

actual vessel paths. PPO, leveraging stable policy updates, 

demonstrates improved performance over DQN in 

complex coastal environments. Through route 

simplification via the DP algorithm, practical and 

navigationally efficient routes are obtained, laying 

groundwork for autonomous navigation advancement. 

This study specifically uses DQN and PPO to optimize 

routes between Shanghai and Busan, and between Ulsan 

and Daesan, comparing the RL-generated routes with 

actual ship paths. Unlike previous research focusing on 

local route planning with static obstacles, this work 

accounts for complex ship dynamics, navigational 

constraints, and environmental factors. The PPO 

algorithm, in particular, offers advanced route searching 

in continuous state and action spaces, better reflecting 

real-world challenges. 

By considering factors like turning radius, propulsion 

limits, and under-keel clearance, as well as dynamic 

conditions such as wind, waves, and currents (Mnih et al., 

2015), the proposed DQN- and PPO-based approaches 

demonstrate the potential for enhancing both safety and 

operational efficiency in East Asian waters. 

 

2. Related Work 

2.1. Reinforcement learning 

Reinforcement learning (RL) generates optimal ship 

routes by iteratively interacting with an environment, as 

illustrated in Figure 1 (Sutton and Barto, 2018). At each 

time step 𝑡, an agent observes its current state 𝑠𝑡 (e.g., 

geographic coordinates and heading), chooses an action 

𝑎𝑡, and transitions to a new state 𝑠𝑡+1, receiving a reward 

𝑟𝑡+1. Through repeated trial-and-error, the agent learns a 

policy that balances two key behaviors: exploration 

(testing new actions) and exploitation (leveraging learned 

strategies). 

 

Figure 1. Interaction between the agent and the 

environment in a Markov Decision Process. 

A fundamental requirement for RL is that the current 

state encapsulates all essential information, known as the 

Markov property. Overloading the agent with excessive 

details can cause confusion, so carefully selecting the 

state representation is crucial. In this study, the 

environment is discretized into a grid system (Figures 2 

and 3), where the agent selects actions corresponding to 

movements between grid cells in both discrete and 

continuous spaces. This setup allows straightforward 

navigation along and around great-circle routes, 

controlling position (latitude/longitude adjustments) and 

speed. The agent’s goal is to maximize cumulative 

rewards by balancing safety, efficiency, and compliance 

with navigational constraints. 
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Figure 2. Grid system for the study of the Shanghai-to-

Busan route. 

Related Work on RL Approaches for Route 

Optimization 

Deep Q-Network (DQN): 

DQN integrates Q-learning with deep neural networks 

to handle high-dimensional state spaces. It estimates 

action-value functions and updates policies through 

experiences sampled from replay buffers, stabilizing 

learning. While effective in simpler scenarios, DQN can 

struggle in highly complex environments. 

 

Figure 3. Grid system for the study of the Ulsan-to-

Daesan route. 

Proximal Policy Optimization(PPO):  

 

Figure 4. The PPO algorithm 

PPO is a policy-gradient method that updates policies 

more stably than earlier algorithms like TRPO(Schulman 

et al., 2015). By clipping policy updates and balancing 

exploration and exploitation, PPO can handle complex, 

dynamic maritime conditions more robustly than DQN. 

 

2.2. Electronic Navigational Chart 

Electronic Navigational Charts (ENCs) are digital chart 

systems that provide essential maritime information for 

safe and efficient route planning during ship operations. 

Produced according to the S-57 standard format 

established by the International Hydrographic 

Organization (IHO), ENCs include electronic formats of 

geographic information such as depths, port locations, 

hazardous areas, and navigational data (IHO, 2018). 

These data are utilized through Electronic Chart Display 

and Information Systems (ECDIS), which are 

periodically updated to provide navigators with the latest 

information, enabling prompt responses to dynamic 

marine environments (Felski and Zwolak, 2020). 

In this study, ENCs were employed to construct the grid-

map environment and to incorporate critical maritime 

elements into the RL framework. Integrating ENC data 

into the grid map allows the agent to operate in an 

environment closely resembling real-world conditions. 

The ENC information includes TSS, navigational aids, 

and spatial data representing the characteristics of 

waterways around the Korean Peninsula, along with 

lighthouses, buoys, beacons, obstacles, anchorages, 

routes, current data, seabed topography, marine weather 

information, maritime traffic data, and risk areas. These 

elements are indispensable for safe navigation and 

efficient route planning at sea. 

The quality and accuracy of ENC data directly affect 

navigational performance. Experiments were conducted 

using the most recent ENC data, adhering to international 

standards for route planning and monitoring. By 

integrating ENC data into the grid-map environment, the 

RL agent can test and refine decision-making strategies 

under realistic maritime conditions, thereby contributing 

to increased maritime safety, improved route planning 

efficiency, and establishing a foundation for future 

autonomous navigation. 

 

2.3. Route Optimization 

Maritime route optimization is critical for maximizing 
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safety and efficiency as vessels travel from departure 

points to destinations. This study seeks to overcome the 

limitations of traditional path-finding algorithms by 

applying DRL techniques within a grid-based map 

environment that captures complex and dynamic 

maritime conditions (including water depth, obstacles, 

TSS, wind, waves, and currents). Traditional algorithms 

typically emphasize the shortest distance, often failing to 

account for safety in areas with dense obstacles or 

intricate traffic-separation schemes. 

By contrast, the RL algorithms utilized here—DQN and 

PPO—allow agents to learn composite reward functions 

through environment interaction. These reward functions 

incorporate hazardous-area avoidance (shallow waters, 

restricted zones, and congested traffic areas), fuel 

efficiency, and minimized navigation time. Consequently, 

agents adapt to environmental changes and update their 

policies, deriving safer and more economical routes. 

Notably, the PPO algorithm ensures learning stability 

via a clipping technique that limits abrupt policy changes 

within its Actor-Critic framework, effectively 

approximating optimal policies in complex, continuous 

state-action spaces. As a result, PPO demonstrates more 

stable route-finding performance than DQN in intricate 

marine environments. Additionally, by integrating real-

time maritime conditions—such as TSS, shallow waters 

near ports, reefs, fishing grounds, and restricted 

navigation zones—the route optimization process closely 

reflects actual environmental constraints. 

However, the optimal routes generated by PPO or DQN 

may contain highly granular waypoints, which may 

require re-evaluation under real conditions involving 

currents or weather. As discussed in Section 2.4, a path 

simplification method such as the DP algorithm can be 

applied during post-processing to address this issue. 

 

2.4. Douglas-Peucker Algorithm 

Although RL algorithms can derive optimal routes, 

these routes may exhibit complex curvilinear forms and 

contain excessively detailed waypoints, impeding 

practical implementation. To address this issue, this study 

employs the Douglas-Peucker (DP) algorithm (Douglas 

and Peucker, 1973) to simplify the generated paths. 

 

3. Methodology  

3.1. Environment Setup and Grid System 

To simplify the complex marine environment into a 

format suitable for RL algorithms, we employ a grid-map 

representation. Bathymetric data from the General 

Bathymetric Chart of the Oceans (GEBCO) was used to 

create a detailed grid covering the Shanghai–Busan and 

Ulsan–Daesan routes. Each grid cell represents an area of 

4 km × 4 km, providing sufficiently granular depth 

information to ensure navigational safety without 

overwhelming computational resources. 

Depth information is critical for safe navigation, 

especially for vessels with large drafts. Shallow areas are 

categorized as high-risk zones, incurring penalties for RL 

agents that plan routes through them (Meneghetti and 

Fraccaroli, 2020). The grid map also integrates 

navigational constraints such as restricted areas and TSS, 

all of which must be respected during route optimization. 

Initially, the grid map was composed of 400 m × 400 m 

cells. To improve computational efficiency while 

maintaining broader navigational perspective, bicubic 

interpolation was used to downscale the resolution to 4 

km × 4 km. This approach reduces environmental 

complexity while preserving essential details for 

decision-making, making it well-suited to coastal routes 

with fewer obstacles. 

Figure 5 illustrates the conceptual layout of the grid map 

used in our experiments. Each cell is defined by latitude 

(𝑙𝑎𝑡) and longitude (𝑙𝑜𝑛) coordinates, with the central 

cell (𝑐𝑒𝑙𝑙𝑐) surrounded by eight neighboring cells. This 

configuration provides the agent with navigational 

information regarding adjacent cells, such as restricted 

zones or shallow areas, during its route exploration. 
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Figure 5. Conceptual composition of the grid map for 

reinforcement learning. 

 

3.2. Data and Routes 

Table 1 provides details about an actual ship sailing 

from Shanghai to Busan, while Figure 6 depicts the map 

of the environment where the RL agent interacts in our 

experiments. 

 

Table 1 Details of the ship operating on the Shangh

ai to Busan route 

Ship to experience 1 

MMSI 440403000 

Name KEOYOUNG SEVEN 

Type Chemical/Oil Products Tanker 

Draught  4.5 m 

Length 70 m 

Beam 12 m 

Date 2024-09-24 07:24 - 2024-09-25 21:08 (GMT) 

Distance 429.7 NM 

 

 

Figure 6. Environment and trajectory of the ship sailing 

from Shanghai to Busan. 

 

Similarly, Table 2 and Figure 7 show the environment 

for a ship sailing from Ulsan to Daesan. 

 

Table 2 Details of the ship operating on the Ulsan t

o Daesan route 

Ship to experience 2 

MMSI 440027000 

Name KEOYOUNG BLUE 1 

Type Chemical/Oil Products Tanker 

Draught  5.1 m 

Length 72 m 

Beam 12 m 

Date 2024-10-01 16:46 ~ 2024-10-03 03:00 (GMT) 

Distance 401.88 NM 

 

3.3. Reward Functions and Hyperparameters 

3.3.1. Parameter of DQN 

The DQN algorithm is a value-based RL method that 

uses state–action value functions (Q-functions) to find 

optimal actions. It was applied here to explore safe and 

efficient routes in the maritime environment. 
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Figure 7. Reinforcement learning environment from 

Ulsan to Daesan. 

(1) Reward Function Design 

The agent receives rewards or penalties for navigating 

different zones or repeating actions, guiding it toward 

efficient paths. Table 3 details the reward function for 

DQN. 

Table 3 Reward function of DQN Algorithm 

Zone/Action 
Reward/

Penalty 

Navigable Areas 0 

Land and TSS Restricted Areas -1 

Visited Areas -1 

TSS Passable Areas  +0.5 

Destination Reached +1 

Current action is the same as the previous action 0 

Current action is adjacent to the previous action -0.001 

Current action is not adjacent to the previous action -0.005 

Total travel distance in the current episode is shorter 

than in the previous episode 
+1 

 

(2) Hyperparameter Settings 

Table 4 lists the hyperparameters used for the DQN 

algorithm. 

Table 4. Hyperparameters for the DQN Algorithm 

Hyperparameters Value 

Total Episodes 25,000,000 

Number of environments(n-envs) 128 

Batch size 2,048 

Buffer size 100,000 

Learning rate 0.001 

Discount factor(gamma) 0.8 

Exploration rate(epsilon) 1.0 

 

3.3.2. Parameter of PPO 

We also conducted experiments using PPO on the same 

routes. Empirical results showed that PPO produced more 

optimal and stable routes than DQN. 

(1) Reward Function Design 

Table 5 outlines the reward function for PPO, similar in 

structure to DQN but with different values to promote 

stability. 

Table 5 Reward function of PPO Algorithm 

Zone/Action 
Reward/

Penalty 

Navigable Areas 0 

Land and TSS Restricted Areas -10 

Visited Areas -5 

TSS Passable Areas  +5 

Destination Reached +10 

Current action is the same as the previous action 0 

Current action is adjacent to the previous action -0.01 

Current action is not adjacent to the previous action -0.05 

Total travel distance in the current episode is shorter 

than in the previous episode 
+10 

 

(2) Hyperparameter Settings 

Table 6 summarizes the hyperparameters for PPO. 

(3) Training Time 

On average, training took around 1 hour and 5 minutes, 

ranging from 50 minutes to 1 hour 20 minutes per 

experiment. 
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Table 6. Hyperparameters for the PPO Algorithm 

Hyperparameters Value 

Total Episodes 15,000,000 

Number of environments(n-envs) 128 

Batch size 1,024 

Learning rate 0.0003 

Discount factor(gamma) 0.91 

Clipping parameter(epsilon) 0.1 

Number of steps(n-steps) 2,048 

Entropy coefficient 0.07 

 

3.4. Post-Processing (Douglas-Peucker Algorithm) 

Once the RL algorithms (DQN or PPO) generate a series 

of waypoints, the raw routes often contain unnecessary 

complexity. These paths can include numerous 

intermediate nodes that, while mathematically optimal, 

may be impractical for real-world navigation due to minor 

directional shifts that provide negligible benefit. 

To address this issue, we apply the Douglas-Peucker 

algorithm, a well-established line simplification 

technique, to the RL-generated routes. The aim is to 

reduce the route’s complexity while retaining the 

essential geometric characteristics and navigational safety. 

The process involves the following steps: 

1. Initial Segmentation: The algorithm first 

considers the route as a polyline defined by a sequence 

of latitude-longitude coordinate pairs. A straight line is 

drawn between the first and last points of this polyline. 

2. Farthest Point Identification: Among the 

remaining intermediate points, the algorithm locates the 

point that is farthest from the straight line. This point 

represents the location where the original route deviates 

most significantly from a simple linear path. 

3. Distance Threshold Check: If the distance 

from this farthest point to the line segment connecting 

the start and end points is greater than a predefined 

tolerance threshold, that point is deemed necessary to 

maintain navigational accuracy. The original route is 

then split at this point, creating two sub-polylines. The 

algorithm recursively applies the same process to each 

sub-polyline. 

4. Iterative Simplification: If the farthest point 

lies within the tolerance threshold, it can be safely 

removed without substantially altering the overall shape 

or safety criteria of the route. The algorithm continues in 

this manner, iteratively simplifying the route by 

removing redundant waypoints until no segment 

violates the tolerance threshold. 

5. Resulting Simplified Route: The end result is 

a route composed of fewer waypoints, maintaining the 

route’s critical navigational features. The tolerance level, 

carefully chosen based on factors such as vessel 

maneuverability, environmental complexity, and safety 

margins, ensures that essential turning points or hazards 

remain accurately represented. 

By applying the Douglas-Peucker algorithm to the raw 

RL-generated routes, the final paths become more 

manageable and operationally friendly. Captains, pilots, 

or autonomous navigation systems can more easily 

interpret and follow these simplified yet reliable routes. 

Although the simplification process reduces complexity, 

careful consideration must be given to the chosen 

tolerance value to avoid discarding important route 

details—especially in areas with intricate coastal features, 

dense traffic, or numerous obstacles. In such scenarios, 

adjustments to the algorithm’s parameters or the use of 

supplementary post-processing strategies may be 

necessary to preserve the integrity of the navigation plan. 

 

4. Results and Discussion  

4.1. Deep Q-Network (DQN) Results  

4.1.1. Optimal Route Generation from Shanghai to Busan  

Figure 8 shows the route generated by DQN for 

Shanghai to Busan. Although it was generally stable, the 

route included numerous detailed waypoints, creating 

unnecessary complexity. To address this issue, the 

Douglas-Peucker algorithm was applied to simplify the 

route, removing superfluous points while retaining 

essential navigational characteristics. The simplified 

result is presented in Figure 9. 
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Figure 8. Original DQN-generated route for Shanghai 

→ Busan. 

 

Figure 9. Shanghai → Busan route after applying the 

Douglas-Peucker algorithm to the DQN output. 

 

Figure 10. Original DQN-generated route for Ulsan → 

Daesan. 

 

4.1.2. Optimal Route Generation from Ulsan to Daesan  

Similarly, DQN was used to generate an optimal route 

from Ulsan to Daesan (Figure 10). Like the previous 

route, it included excessive waypoints, increasing overall 

complexity. After applying the Douglas-Peucker 

algorithm, the path was simplified, resulting in a more 

streamlined and navigationally efficient route (Figure 11). 

 

 

Figure 11. Simplified optimal route from Ulsan to 

Daesan using the Douglas-Peucker algorithm on the 

DQN model's output. 

 

4.2. Proximal Policy Optimization (PPO) Results 

4.2.1. Optimal Route Generation from Shanghai to Busan  

The PPO algorithm, known for its stable policy updates, 

produced efficient routes even in complex maritime 

environments. Figure 12 illustrates the PPO-generated 

route from Shanghai to Busan. Despite obstacles such as 

islands, shallow areas, and restricted zones, the PPO 

approach reached the destination safely and efficiently. 

Initially, the route included frequent directional changes. 

After applying the Douglas-Peucker algorithm (Figure 

13), the route became more straightforward and suitable 

for practical navigation. 

 

4.2.2. Optimal Route Generation from Ulsan to Daesan 

The PPO algorithm also successfully generated an 

optimal route from Ulsan to Daesan (Figure 14). As 

before, applying the Douglas-Peucker algorithm 

simplified the route, removing unnecessary complexity 

and resulting in a more efficient and navigable path 

(Figure 15). 
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Figure 12. Original PPO-generated route for Shanghai 

→ Busan. 

 

 

Figure 13. Shanghai → Busan route after applying the 

Douglas-Peucker algorithm to the PPO output. 

 

 

Figure 14. Original PPO-generated route for Ulsan → 

Daesan. 

 

Figure 15. Ulsan → Daesan route after applying the 

Douglas-Peucker algorithm to the PPO output. 

 

4.3. Comparative Analysis of Results 

Table 7. Comparative Distances (NM) 

Route Shanghai → Busan Ulsan → Daesan 

Actual 574.76 605.02 

DQN 442.10 413.56 

PPO 422.74 406.21 

 

PPO produced safe and efficient routes even in 

challenging environments, yielding more optimal paths 

than DQN. Particularly, route simplification via the DP 

algorithm provided routes suitable for practical 

navigation. 

However, in areas with multiple islands, simplification 

using only the DP algorithm posed limitations. In such 

complex environments, it may be necessary to retain the 

original PPO-generated route or employ further 

algorithmic refinements to preserve both efficiency and 

safety. 

4.4. Discussion 

Experimental results demonstrate that PPO outperforms 

DQN in generating efficient routes for complex maritime 

environments. Moreover, applying the DP algorithm for 

route simplification enhances real-world navigability. 

This study suggests that RL-based autonomous route 

generation can significantly contribute to maritime route 

planning, although further research is needed for more 

robust performance in highly complex marine 
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environments. 

5. Conclusion 

This study confirmed that applying reinforcement 

learning—specifically DQN and PPO—can produce 

safer and more efficient routes in complex East Asian 

waters. Both DQN and PPO outperformed conventional 

approaches in reducing distance and improving 

navigational safety compared to actual vessel routes. 

Among these methods, PPO yielded more stable and 

coherent solutions, demonstrating its adaptability to 

intricate maritime environments and dynamic constraints. 

Nevertheless, the work has some limitations. Integrating 

real-time data such as weather patterns and live traffic 

information is essential to strengthen model robustness. 

Further enhancements include refining the grid map with 

higher-resolution data, using advanced sensors, and 

collaborating with maritime authorities for large-scale 

validation in real environments. These steps will be 

crucial milestones in the practical adoption of RL for ship 

navigation. 

Overall, this research offers a foundation for integrating 

route optimization technologies into complex marine 

environments like East Asia. The results suggest potential 

contributions to route optimization and ship-operation 

management systems by incorporating weather 

information, navigational notices, ENCs, and real-time 

traffic volumes. This can serve as a critical basis for 

balancing environmental objectives and operational 

efficiency in the maritime industry. Future researchers 

may also explore additional real-time environmental 

variables to further expand this field. 
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