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Abstract  

With the rapid development of the global economy, transport safety and security have become the key 

issues in maritime transportation all over the world. In practical applications, the Automatic Identification 

System (AIS)-based measurement of similarities between different vessel trajectories plays an important 

role in improving maritime transportation, e.g., maritime navigation, maritime supervision and 

management. However, the received AIS datasets are usually composed of a large amount of redundant 

information which could significantly increase the computational complexity. To deal with this problem, a 

Douglas-Peucker (DP)-based calculation method is introduced in this paper to accurately compress the 

spatio-temporal AIS trajectories while preserving the main geometrical structures. Based on the 

compressed trajectories, it is able to accelerate the Dynamic Time Warping (DTW) algorithm for the 

measurement of similarities between different vessel trajectories. In particular, the combination of DP and 

DTW has the capacity of significantly reducing the computational cost and guaranteeing the accuracy of 

similarity measures. The experimental results have demonstrated the superior performance of the proposed 

method in terms of computational cost and accuracy of similarity measures. 
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1. Introduction  

1.1 Background and related work 

With the rapid development of the global economy, a 

large amount of commodities are being carried through 

maritime transportation from place to place around the 

world (Kaluza et al., 2010). Under this circumstance, the 

control of transportation safety has attracted increasing 

attention in maritime transportation. However, these 

commonly-used facilities often suffer from some 

potential limitations including human error, wicked 

time-validity and nearby environmental influences. To 

overcome these limitations and guarantee safe 

navigation, the International Maritime Organization 

(IMO) (2001) promotes the Automatic Identification 

System (AIS) in maritime transport because of its 

excellent performance in numerous aspects (Mokhtari et 

al., 2007). It is a navigational safety system and 

mandatory vessel communication for the use of collision 

avoidance, coastal surveillance, and traffic management 

(Robards et al., 2016). This device can automatically 

exchange the important and real-time vessel information 

with ships and AIS base stations nearby, which plays a 

crucial role in vessel tracking and services. There are 

mainly two primary message types in the AIS system. 

The main type is the static information including ship 

name, ship Maritime Mobile Service Identify (MMSI), 

ship type, ship size, etc. The other type is the kinematic 

information including ship location, speed, heading, rate 

of turn and so on (Mao et al., 2016). 

AIS can be utilized as an effective tool for anomaly 

detection, trajectory prediction, collision avoidance and 

AIS buoy, etc. Felski et al. (2015) pointed out the 

disadvantages of the commonly-used radar in the field of 

collision avoidance, since radar is effective only for 

constant values of ship motion parameters. Through the 

experiments, Felskiet et al. (2015) have demonstrated 

that AIS can effectively overcome the limitation of radar 

to decrease the ratio of collisions in practice. Mao et al. 

(2016) constructed a standard AIS database to illustrate 

the importance of trajectory prediction for automated 

detection of vessel abnormalities. In addition, the 

establishment of AIS buoys has great impact in the field 

of navigational safety. The AIS buoy can not only be 

used as beacon lights, but also can deliver and receive 

AIS information. It is able to guarantee the navigation 

security for one vessel under complex transportation 

environments. The visualization of vessel trajectories 

based on AIS data has the capacity of detecting 

abnormal ship behaviours and assisting maritime 

management (Li et al., 2016) An AIS-driven partition-

and-group framework was proposed in Ref. (Lee et al., 

2007) to perform the trajectory clustering, which plays 

an important role for automatic detection of abnormal 

vessel behaviours in ocean engineering. 

There are many applications of trajectory clustering in 

vast scientific research fields, e.g., anomaly detection, 

trajectory prediction. The important and fundamental 

step of trajectory clustering is to measure the similarities 

between different trajectories. In current literature, 

numerous methods have been proposed to measure the 

similarities. Roche et al. (1998) considered the 

correlation ratio as a new similarity measure to perform 

the robust registration of multimodal images. This 

method is able to provide a good trade-off between 

accuracy and robustness. To select a better similarity 

measure to implement functional magnetic resonance 

image registration, Freire et al. (2002) have compared 

three similarity measure methods (i.e., Geman-McClure 

(GM) estimator, correlation ratio and Mutual 

Information (MI) relative) through numerous numerical 

experiments. Since trajectory clustering is often 

sensitive to undesirable outliers, Li et al. (2017) have 

proposed a multi-step trajectory clustering method for 

robust AIS trajectory clustering. In addition, Dynamic 

Time Warping (DTW) algorithm has been introduced to 

solve the problem of voice recognition. Experimental 

results have shown that this method could achieve 

satisfactory performance for similarity measures in 

many fields (Muda et al., 2010).This paper tends to 

robustly measure similarities between different AIS 

trajectories using the DTW algorithm. 

However, in practical applications, the AIS trajectories 

are usually composed of a huge amount of AIS data, 

which could increase the computational cost and destroy 

the time-validity. In order to accelerate the AIS 

trajectory similarity measures, more attention should be 

paid to significantly compress the AIS data while 

preserving the main structural properties. Theoretically, 

Donoho et al. (1998) reviewed the Shannon theory for 

the lossy data compression. Portniaguine and Zhdanov 

(2002) introduced the cubic interpolation to the 3-D 

magnetic anomaly inversion and demonstrated that the 

method is feasible and could guarantee a high quality. 
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For the sake of time-validity of Electronic Chart Display 

and Information System (ECDIS), Douglas-Peucker (DP) 

algorithm has been successfully applied to reduce the 

amount of AIS trajectory data (Zhang et al., 2016). 

Saalfeld (1999) has certified that the DP algorithm can 

guarantee that the resulting simplified polyline is 

topologically consistent with itself and with the 

neighbouring features. Therefore, there is a huge 

potential to combine DP with DTW to accelerate the 

similarity measures for massive AIS trajectories. 

Due to the massive AIS trajectories, the direct 

implementation of the original DTW algorithm will 

suffer from high computational cost in practice. To 

overcome this limitation, we propose to develop an 

effective DTW-based similarity measure method based 

on the DP algorithm. The proposed method has the 

capacity of guaranteeing the accuracy of trajectory 

similarity measures while significantly reducing the 

computational time. Numerous experiments will be 

conducted to illustrate the good performance of our 

proposed method. 

1.2 Organization 

The remainder of this paper is organized into 

several sections. In Section2, we briefly review the 

important basic concepts, including the DP and DTW 

methods. A two-step framework is proposed for the 

measures of trajectory similarities in Section 3. 

Section 4 presents numerous experiments to 

demonstrate the effectiveness of the proposed 

method. Finally, we conclude this paper by 

summarizing our contributions in Section 5. 

 

2. Basic Mathematics Theories 

2.1. Douglas-Peucker algorithm 

The classic DP algorithm belongs to the category of 

vertex sub-sampling algorithms (Saalfeld, 1999). 

Massive experiments have shown that the DP algorithm 

is able to effectively compress the trajectories while 

guaranteeing the main geometrical structures. In 

particular, the resulting simplified trajectories are 

topologically consistent with the original ones, 

especially for the neighbouring features in trajectories 

(Saalfeld, 1999). Therefore, the DP algorithm will be 

introduced in this paper to compress the massive AIS 

trajectories before the measures of trajectory similarities. 

This preprocessing step can significantly decrease the 

computational cost of DTW-based AIS trajectory 

similarity measures. The aim of the DP algorithm is to 

reconstruct the trajectory with less but more important 

points (i.e., characteristic points) extracted from the 

original trajectory. The reconstructed trajectory is used 

to approximate the original trajectory, which can 

maintain the general geometrical structures. 

The original trajectory A is defined as follows. 

1 2( , , , , , )i nA A A A A= L L  (1) 

Where A denotes the trajectory point for i=1,2,…,n. 

When the number of points is large enough, the original 

trajectory can be replaced by line segments ܣଵܣଶതതതതതതത, ,ଷതതതതതതതܣଶܣ … , ,పതതതതതതതതതܣపିଵܣ … , ௡തതതതതതതതതതܣ௡ିଵܣ . In order to 

decrease the amount of trajectory points, we reconstruct 

the trajectory with fewer but more important points 

which are selected from the original point set A, i.e., 

1 2' ( , , , , , ) 'b b bj bmA A A A A A A= ⊆L L  (2) 

If the characteristic points can be obtained accurately, 

the broken lines ܣ௕ଵܣ௕ଶതതതതതതതതത, ,௕ଷതതതതതതതതതܣ௕ଶܣ … , ,௕ఫതതതതതതതതതതതതതതܣ௕(ఫିଵ)ܣ ௕௠തതതതതതതതതതതതതതതതܣ௕(௠ିଵ)ܣ ,… can substitute the original trajectory 

approximately. Thus, it is of great necessity to introduce 

the DP algorithm in this paper to compress the original 

AIS trajectories for the purpose of reducing the 

computational cost of DTW-based similarity measures. 

 

Figure 1: Flowchart of Basic Douglas-Peucker Algorithm  

The schematic diagram of the DP algorithm is visually 

illustrated in Figure 1. The line segments connecting 10 
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points (A1,A2,…,A10) construct the original trajectory. To 

preserve the main geometrical structures of the original 

trajectory and reduce the number of trajectory points, it 

is necessary to extract the characteristic points from the 

original trajectory. First, we must select a pre-defined 

threshold (i.e., tolerance) λ as a benchmark to simplify 

the trajectory. The line (ܣଵܣଵ଴തതതതതതതത ) connecting the first 

point (A1) and last point (A10) is taken for the datum line. 

Then the vertical Euclidean distance of each point to the 

datum line is calculated in the original trajectory. It can 

be found that some of the vertical Euclidean distances 

are larger than the fixed threshold λ, (e.g., A7), the point 

related to the maximum vertical Euclidean distance will 

be selected to divide the original trajectory into two sub-

trajectories (e.g., ܣଵܣ଻തതതതതതത, ଵ଴തതതതതതതതܣ଻ܣ ) (Zhang et al., 2016). 

This procedure will be performed iteratively until there 

is no characteristic point which has larger Euclidean 

distance than the fixed threshold λ.  

  

Figure 2: Similarity Measures via Primitive Approach (a) 

and DTW Algorithm (b) 

2.2. Dynamic time warping algorithm 

The DTW algorithm is capable of effectively 

measuring similarity between two time series which may 

vary in spatio-temporal domain (Muda et al., 2010). This 

algorithm has been widely utilized in various disciplines 

including classification, clustering, anomaly detection 

and so on (Ratanamahatana and Keogh, 2004). The 

essential purpose of DTW is to find an optimal 

alignment between two given (time-dependent) 

sequences under certain restrictions. The traditional 

approaches, which compute the matching distance 

between two time sequences, usually extract the 

sequence sample points and compare the similarity 

sample-by-sample. The disadvantage is that the 

approaches could not guarantee the robust similarity 

measures (Rath and Manmatha, 2003), as shown in 

Figure 2(a).The basic principle of the DTW algorithm is 

to compare two time sequences and measure their 

similarities by computing a minimum distance between 

these two time sequences (Muda et al., 2010). In Figure 

2(b), it can be found that DTW is able to effectively 

overcome the weakness that exist in traditional methods. 

  

Figure 3: The Flowchart of Basic Dynamic Time Warping 

Algorithm 

Let X and Y denote two time sequences, whose lengths 

are m and n respectively. These two time sequences are 

given by. 

1 2, , , , ,i mX x x x x= L L (3)

1 2, , , , ,j nY y y y y= L L (4)

To match the two time sequences based on DTW, we 

build an m-by-n matrix whose certain element includes 

the distance d(xi, yj) between the two points xi and yj . In 

particular, the Euclidean distance is applied in this work, 

i.e.,	݀(ݔ௜, (௜ݕ = ඥ(ݔ௜ − ௜)ଶݕ . Each element (xi, yj) in 

matrix corresponds to the alignment between the points 

xi and yj. A warping path, W, is a successive set of matrix 

elements that defines a mapping between X and Y. Thus, 

we can obtain the following formulation. 

1 2, , , , ,k KW w w w w= L L  (5)

Where ݉ܽݔ(݉, ݊) 	ܭ	݉ + ݊ − 1. To guarantee the 

accuracy of similarity measures, several constraints 

should be considered to restrict the warping path as 

follows: 

a) Boundary condition: w1=(1,1) and wK=(m,n) .It is 

able to guarantee that the warping path can start at the 

bottom left and end at the top right in the matrix.  

b) Continuity and Monotonicity: Given wk=(a,b) and 

wk-1=(a,b), where 0	ܽ − ܽᇱ	1and 0	ܾ − ܾᇱ	1. This 

requires that the warping path will not turn back and 

both i and j indexes are monotonic increasing (Muda et 

al., 2010). In addition, the points in W should be 

monotonically spaced in time (Ratanamahatana and 

Keogh, 2004). 

Generally speaking, the warping path which has the 
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minimum warping cost will stay close to the diagonal of 

the matrix. As a consequence, the minimum cumulative 

distance γ(i,j) can be described as follows: 

( 1, 1)

( , ) ( , ) min ( , 1)

( 1, )
i j

i j

i j d x y i j

i j

γ
γ γ

γ

− − 
 = + − 
 − 

 (6)

The whole process of the DTW algorithm for time 

sequence (i.e., AIS trajectory in this work) similarity 

measures is visually illustrated in Figure 3. 

 

3. The Two-Step Framework for Measuring AIS 

Trajectory Similarity 

A DP-based DTW method is proposed in this work to 

accelerate the similarity measures between massive AIS 

trajectories. Although the DTW method has been widely 

studied in current literature, to the best of our knowledge, 

no research has been conducted on a DP-based DTW 

method for measuring trajectory similarities thus far. In 

particular, the proposed method is able to significantly 

compress the AIS trajectories while preserving the 

important structural properties. The DP-based DTW 

method could correspondingly accelerate the measures 

of AIS trajectory similarities in practical applications. 

The main steps of our proposed method can be found in 

Figure 4.  

  

Figure 4: The Flowchart of Our Proposed Method 

It is well known that the AIS data often suffers from 

missing data, undesirable outliers during data acquisition 

and transmission. To ensure the accuracy of similarity 

measures, it is necessary to effectively preprocess the 

original AIS trajectories. In this work, the trajectory 

points related to the missing data and outliers will be 

detected and reconstructed using the cubic spline 

interpolation (Cuche et al., 2000). The introduced 

interpolation method is able to guarantee high-accurate 

results even low degree polynomials for the spline are 

selected. Furthermore, it has the capacity of avoiding the 

problem of Runge’s phenomenon that often exists in 

high degree polynomial interpolation methods. In 

addition, the AIS trajectories with stay points will be 

deleted in this work to guarantee the robust similarity 

measures. We only consider the appropriate AIS 

trajectories in our numerical experiments. In practice, the 

computational time of similarity measures often suffers 

from long computational time due to the massive AIS 

trajectories. To deal with this disadvantage, the DP 

algorithm was introduced in the first step to effectively 

compress the AIS trajectories. This algorithm was able 

to significantly reduce the amount of AIS data records 

while well preserving the main geometrical structures of 

AIS trajectories. However, the trajectory compression 

quality is still sensitive to the DP threshold λ in essence. 

The small threshold could guarantee the quality of 

compressed trajectories but still lead to high 

computational cost during similarity measures. In 

contrast, the large threshold could significantly reduce 

the computational cost but may result in a low quality of 

trajectory compression. As a consequence, numerous 

experiments will be carried out to manually select the 

optimal compression threshold. Influences of 

compression thresholds on trajectory similarity measures 

will be implemented in the second step of our proposed 

method. To further investigate the importance of 

compression threshold, the computational time of AIS 

trajectory similarity measures will be compared under 

different DP compression thresholds. The optimal 

threshold selected is able to guarantee a satisfactory 

balance between the accuracy of trajectory similarity 

measure and DTW computational cost. 

 

4. Experiment Results and Discussion  

In this section, we tend to investigate the influences of 
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different compression thresholds for the DP algorithm 

on DTW-based AIS trajectory similarity measures. The 

experimental AIS datasets used in this paper were 

collected from the AIS base stations in the Wuhan 

section of the Yangtze River, which includes 180 ship 

trajectories of 28008 pairs of coordinate points. The 

numerical experiments were carried out using 

MATLAB R2015a (The Math Works, Natick, Inc., MA) 

on a machine with 3.30 GHz Intel(R) Pentium(R) CPU 

G3260 and 4.00GB RAM.  

4.1. The influences of DP compression thresholds on AIS 

trajectories 

It is well known that the AIS trajectories are commonly 

composed of a large amount of coordinate points. The 

larger the amount of AIS data is, the more accurate the 

trajectories are. However, with the increasing amount of 

AIS trajectories, it is becoming more difficult to transmit, 

store and process the AIS data. As a consequence, how 

to compress the massive quantities of spatio-temporal 

trajectories has attached increasing attention. This paper 

aims to implement the effective compression for 

massive AIS trajectories while maintaining their main 

features. 

Table 1: The Number of AIS Trajectory Points and 

Compression Ratio for Different DP Compression 

Thresholds, i.e., Tol=0, 1.0e-8, 5.0e-8, 1.0e-7, 2.5e-7, 5.0e-7, 

1.0e-6, 2.5e-6, 5.0e-6, 7.5e-6, 1.0e-5, 1.0e-4 

Thresholds AIS Trajectory Points Compression Ratio (%)

0 28008 0.000 

1.0e-8 25045 10.58 

5.0e-8 25027 10.64 

1.0e-7 24931 10.99 

2.5e-7 23545 15.94 

5.0e-7 21142 24.51 

1.0e-6 18713 33.19 

2.5e-6 15432 44.90 

5.0e-6 8811 68.54 

7.5e-6 6211 77.82 

1.0e-5 5053 81.96 

1.0e-4 996 96.44 
 

In order to investigate the influences of different DP 

compression thresholds on the qualities of AIS 

trajectories, we manually select 12 thresholds ranged 

from 0 to 1.0e-4 to perform the AIS trajectory 

compression experiments. For the sake of better 

comparison, the quantitative results for DP-based AIS 

trajectory compression are detailedly illustrated in Table 

1. As shown in this Table, the compression ratios and 

the number of remaining trajectory points are 

statistically analysed for different DP compression 

thresholds. It is well known that the structural properties 

of remaining trajectory points are critically important for 

measuring the similarities between different AIS 

trajectories. Thus, it is necessary to select the optimal 

compression threshold for simplifying AIS trajectories. 

From Table 1, it can be observed that the number of AIS 

trajectory points is decreased and the compression ratio 

is also increased with the increasing value of the DP 

compression threshold. The increased compression ratio 

could significantly reduce the processing time of DTW-

based trajectory similarity measures. If the threshold 

ranges from 1.0e-8 to 2.5e-7, the number of AIS 

trajectory points and compression ratio are changed 

slightly as the increase of compression threshold. In 

contrast, the threshold can obviously change these two 

assessment criteria if the threshold ranges from 5.0e-7 to 

1.0e-4. The visual displays of compressed AIS 

trajectories under different compression thresholds could 

be found in Figure 5.  

  

Figure 5: The Visual Displays of Compressed AIS 

Trajectories Under Different DP Compression Thresholds 

Theoretically, the highest compression ratio is able to 

guarantee the lowest computational cost for measuring 

the AIS trajectory similarities. However, the large 

threshold could degrade the geometrical structures of 

AIS trajectories leading to negative effects on similarity 

measures, maritime navigation, maritime supervision 

and management in practice. To further investigate the 

influences of DP compression thresholds on AIS 

trajectories, we propose to visually analyse the DTW-
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based AIS trajectory similarities for different 

compression thresholds in the next section.  

4.2. DTW-based AIS trajectory similarity measures 

The DTW-based similarity measures are carried out for 

both original and compressed AIS trajectories in this 

subsection. First, the compressed AIS trajectories are 

respectively generated for 12 different DP compression 

thresholds (i.e., Tol=0, 1.0e-8, 5.0e-8, 1.0e-7, 2.5e-7, 

5.0e-7, 1.0e-6, 2.5e-6, 5.0e-6, 7.5e-6, 1.0e-5, 1.0e-4). 

The influences of different compression thresholds on 

DTW-based trajectory similarity measures will be 

further investigated. In our experiments, we tend to take 

the trajectory similarity measure with Tol=0 (i.e., 

uncompressed AIS trajectories) as the benchmark. This 

original version will be compared with the compressed 

trajectories under the other 11 different DP compression 

thresholds. The numerous experiments on AIS trajectory 

similarity measures are visually summarized in Figure 6.  

  

Figure 6: The Visualization of DTW-Based Similarity 

Measures for Compressed AIS Trajectories Under 

Different DP Thresholds 

It can be found that the results of similarity measures 

with the compressed AIS trajectories are somewhat 

different from the result with uncompressed AIS 

trajectories. It is worth pointing out that if the thresholds 

are within a certain range, the results with compressed 

data will be similar to the original version. Under this 

condition, unobvious influences of different thresholds 

on DTW-based trajectory similarity measures are found 

in experiments. In particular, if the threshold ranges 

between 1.0e-8 and 2.5e-6, the DP algorithm is able to 

well preserve the main geometrical structures of AIS 

trajectories. The accuracy of trajectory similarity 

measurement could be guaranteed correspondingly. 

However, when the threshold is within a range between 

5.0e-6 and 1.0e-4, the captured trajectory similarities are 

obviously different from the similarities calculated from 

the original AIS data, especially for the large 

compression threshold. More significant differences 

between original and compressed versions could be 

easily found as the threshold increases. It means that the 

structural properties of the AIS trajectories have been 

destroyed after DP compression with large thresholds. 

To guarantee the accuracy of similarity measures, more 

attention should be paid to the optimal selection of DP 

compression thresholds. 

To improve the accuracy of DTW-based trajectory 

similarity measures, small DP compression threshold 

should be selected in theory. However, the small 

threshold in practice would lead to high computational 

cost. In general, with less AIS trajectory data, the 

processing time of DTW-based similarity measures will 

also be decreased accordingly. We tend to investigate 

the computational cost of similarity computation for 

compressed AIS trajectories under different compression 

thresholds (including original AIS trajectories). The 

computational time of our proposed method is 

summarized in Table 2. To reduce randomness, each 

experiment for one threshold ran 20 times to obtain the 

final average results.  

Table 2: CPU Computational Time (mean±std) for 

Measuring AIS Trajectory Similarities Under Different DP 

Compression Thresholds (unit: s) 

Thresholds CPU Time Similarity 

0 2.8687±0.0093 — 

1.0e-8 2.5549±0.0011 High 

5.0e-8 2.5527±0.0020 High 

1.0e-7 2.5366±0.0044 High 

2.5e-7 2.3323±0.0242 High 

5.0e-7 1.9923±0.0069 High 

1.0e-6 1.6655±0.0011 High 

2.5e-6 1.2696±0.0116 High 

5.0e-6 0.5700±0.0003 Low 

7.5e-6 0.3496±0.0009 Low 

1.0e-5 0.2716±0.0003 Low 

1.0e-4 0.0887±0.0002 Low 
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Figure 7: The Statistical Results of Computational Time for 

DTW-Based Trajectory Similarity Measures Under 

Different DP Compression Thresholds 

This work mainly focuses on investigating the 

influence of trajectory compression on similarity 

measures. The implementation of similarity measures 

for trajectories is performed only based on compressed 

AIS trajectories. Before the AIS trajectories are stored in 

the database, the trajectories have been compressed via 

the introduced DP algorithm. Essentially, DP 

compression can be regarded as an off-line process 

without urgency in practice. In contrast, it has more to 

implement on-line similarity measure to meet the 

requirement of efficiency. Thus, the on-line similarity 

measure is considered to be more important than off-line 

DP compression in this work. To make an intuitionistic 

contrastive analysis, the statistical results of 

computational time for trajectory similarity computation 

under different compression thresholds are visually 

illustrated in Figure 7. It can be found that the largest 

threshold could generate the lowest computational time, 

but the resulting accuracy of similarity measures would 

be degraded due to the loss of structural properties of 

original AIS trajectories. In contrast, although the main 

structural properties could be satisfactorily preserved 

with the smallest threshold, the related computational 

time will be still high and constrain the practical 

application. Thus, there is a great potential to develop an 

automatic method to adaptively select an optimal 

threshold for achieving a good balance between the 

accuracy of trajectory similarity measure and DTW 

computational cost 

4.3. MATLAB-based software for AIS trajectory 

similarity measures 

For the sake of convenience to prospective readers, as 

shown in Figure 8, a MATLAB-based computer 

software is developed in this paper to measure the 

similarities between different AIS trajectories. Based on 

the developed computing platform, it will be convenient 

for us to better understanding and evaluate the proposed 

Douglas-Peucker-based DTW method. Our developed 

computing platform is mainly composed of three parts. 

The first part of our platform is a control panel, which 

contains “Load AIS Datasets” and “Threshold 

Selection”. The second part is about the visual 

illustrations of AIS points and trajectories before and 

after implementation of DP compression. The users 

could manually select the optimal threshold in the first 

part to investigate the influences of DP compression 

thresholds on AIS trajectories in the second part. The 

visualization of similarities for original and compressed 

AIS trajectories is displayed in the third part. The 

qualitative influences of compression thresholds on 

visualization performance could be investigated 

correspondingly. In particular, the interested users could 

easily upload the specific AIS datasets and perform the 

numerical experiments with trajectory similarity 

measures through the MATLAB Graphical User 

Interface (GUI). The resulting experimental results will 

be visually illustrated in our proposed computing 

platform. For the sake of evaluating experiments, the 

final source code will be freely available. 

  

Figure 8: The MATLAB GUI of Similarity Measure 

Software for Massive AIS Trajectories 
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5. Conclusion  

In this paper, we proposed a Douglas-Peucker-based 

DTW method to accelerate the similarity measures 

between massive AIS trajectories. This proposed method 

could significantly compress the AIS trajectories while 

maintaining the main geometrical structures. Therefore, 

the DTW-based trajectory similarity measures could be 

obviously accelerated in practical applications. There is 

a great potential to extend the proposed method to 

reduce the computational time for AIS trajectory 

clustering, which plays an important role in maritime 

navigation, maritime supervision and management. 

Honestly, the trajectory compression quality and the 

accuracy of similarity measures are sensitive to the DP 

compression threshold. In particular, the large threshold 

is able to significantly accelerate the DTW-based 

trajectory similarity measures. However, it is difficult to 

guarantee the important structural features and degrade 

the compression quality. Although it is available to 

enhance the compression quality through the manual 

selection of a small threshold, this small one could not 

reduce the computational cost for measuring the 

similarities between massive AIS trajectories. In practice, 

the selection of the DP compression threshold was 

always carried using the method of exhaustion. This 

manual method could achieve a good balance between 

the trajectory compression quality and the number of 

remaining trajectory points but at the expense of 

consuming more time. To overcome this limitation, 

more attention will be paid to develop an adaptive 

method for automatically selecting the DP compression 

threshold in our future work. The proposed method will 

have the capacity of accurately compressing the AIS 

trajectories while guaranteeing the quality of DTW-

based similarity measures. 
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