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Abstract  

The use of radar-based systems for vessel monitoring is not suitable in populated areas, due to the high 

electromagnetic emissions. In this paper, a camera based vessel recognition system for application in the 

context of Vessel Traffic Services (VTS) and Homeland Protection (HP) is proposed. Our approach is 

designed to extend the functionality of traditional VTS systems by permitting the classification of both 

cooperative and non-cooperative targets, using camera images only. This allows enhancing the surveillance 

function in populated areas, where public opinion is strongly concerned about electromagnetic emissions and 

therefore antennas are suspiciously observed and radars are not allowed. Experiments have been carried out 

on a publicly available data set of images coming from the ARGOS boat traffic monitoring system in the 

City of Venice (Italy). The obtained classification accuracy of 89.6% (with 11 different classes of boats) 

demonstrates the effectiveness of the proposed approach. 
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1. Introduction  

Vessel Traffic Services (VTS) systems contribute to the 
safety and efficiency of navigation, safety of life and 
protection of the environment. These tasks may demand 
specific traffic management to minimise incident, 
improve better use of ports and navigation facilities 
promoting positive economic results. VTS are in charge 
of acquisition, processing, and analysis of data in order to 
provide monitoring and navigational advices from inland 
waters up to territorial waters (12 NM). Classic VTS are 
equipped with Radar and U/VHF radio in different forms. 
This means that automatic classification is possible only 
for cooperative targets, i.e., the ones equipped with the 
Automatic Identification System (AIS), while non-
cooperative (non-AIS) targets have to be identified 
manually by human operators. Moreover, the use of 
radars can be problematic in populated areas, where 
public opinion is strongly concerned about 
electromagnetic emissions and therefore antennas are 
suspiciously observed and radars are not allowed. 

In this paper, we describe a vision-based classification 
approach for application in the context of VTS and 
Homeland Protection (HP). In particular, we adopt a 
robust deep learning technique for boat classification, 
using real images captured by ARGOS system for 
training and testing (Bloisi et al., 2009), an advanced 
automatic traffic monitoring system operating 24x7x365 
in the City of Venice, Italy (see Figure 1). 

The main contribution of the proposed approach 
consists in the use of a two-step strategy: First, a binary 
(i.e., boat/no-boat) classification, based on off-the-shelf 
Convolutional Neural Network (CNN) features, is carried 
out. Then, a multi-class classification, using a training set 
containing seventeen classes, is performed. To validate 
quantitatively the proposed approach, we use the ARGOS 
classification data set, which is part of the publicly 
available Maritime Detection, Classification, and 
Tracking (MarDCT) database (Bloisi et al., 2015). The 
ARGOS classification data set is unique in its nature and 
it is very challenging due to the presence of boat wakes, 
waves, reflections, and boats navigating very close each 
other. 

The rest of the paper is organized as follows. Section II 
contains an overview of recent deep learning approaches 
for image classification. Section III contains the details of 
the proposed algorithm, while qualitative and quantitative 
results are shown in Section IV. Finally, conclusions are 
drawn in Section V. 

 

Figure 1: The ARGOS system in Venice 

 

2. Related Work 

This section contains, in the first part, a discussion about 
recent deep learning solutions for the general problem of 
object detection that are applicable to the problem of boat 
detection. Then, we discuss some specific features for the 
boat classification problem. 

2.1. CNN based Classification 

Convolutional Neural Network (CNN) has shown 
impressive performance on image classification 
(Krizhevsky et al., 2012) and object detection (Erhan et 
al., 2014). CNNs can handle the presence of multiple 
instances of the same object in the processed image. In the 
group of CNN based methods, DetectorNets (Szegedy et 
al., 2013) and OverFeat (Sermanet et al., 2013) perform 
the object detection on a coarse set of sliding-windows. 
On the other hand, Region-based Convolutional Neural 
Networks (R-CNNs), proposed by Girshick et al. (2016), 
work on the extraction of proposal regions that are a 
subset of all the possible image locations. Detection is 
carried out by applying a classification on different 
regions (patches) extracted from the original image. The 
patch with high probability does not represent only the 
class of that region, but also gives its location in the image. 
The second stage of R-CNN involves improving the 
localization accuracy by minimizing the error of the 
predicted coordinates against the ground truth coordinates. 
To this end, a linear regression layer is optimized. Then, 
a non-maximal suppression technique is used to merge 
highly overlapping regions, which are predicted to be of 
same class. 

2.2. Boat Classification 

 

A number of approaches have been proposed in the 
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literature to provide solutions for classifying vehicles 

based on Computer Vision and CNN approaches 

(Bousetouane and Morris, 2015). The number of the 

different boat types navigating in the City of Venice is 

very high, this make the recognition and classification 

tasks very challenging (Bloisi et al., 2007).  

In this work, we use a data set made of fixed size 

snapshots acquired from real cameras placed in the Grand 

Canal water channel in Venice. It has been generated by 

using the detection and tracking functionalities of the 

ARGOS system. Moreover, we use the classification 

method described in (Bloisi et al., 2013), as baseline to 

evaluate the performance of our approach. 

The boat classification process has been designed to be 

a starting point for obtaining benchmark results within the 

MarDCT data sets. The main challenges in the 

classification task are represented by: 

1. Static elements classified as boats. 

2. Partial view of the captured boat(s). 

3. Multiple boats captured in the same snapshot. 

4. False positive detections caused by waves and 

reflections. 

A drawback of the ARGOS classification data set is the 

presence of some labels not accurately placed. These 

annotations do not distinguish among cases in which 

more than one boat is present. In such a case, a label 

named multiple_occurence is assigned and no distinction 

among the type of vessels present in the image is given. 

Moreover, the data set has a label called water, which 

includes false positive snapshots that are incorrectly 

classified as containing boats. 

In this paper, we focus on improving the boat detection 

deployed in the ARGOS system by handling the above 

listed challenges and the image acquisition (i.e., by 

filtering out background elements like water or boat 

cropped partially). This led to train the CNN model on an 

increased data set for boat recognition. Since the number 

of labelled images is greater, partial view and multiple 

boats in the captured snapshots can be taken into account. 

As a result, it is possible to improve the classification 

performance. 

 

 

Figure 2: Functional architecture of the proposed approach 
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3. Proposed Method 

The functional architecture of the proposed method is 

shown in Figure 2, with all the different modules involved 

in the computational pipeline. We use a pre-trained 

VGG16 deep neural network in two different ways: 

1. For a coarse-grained detection (i.e., boat/no-boat 

classification). 

2. For a fine-grained multi-class detection 

procedure. 

The aim of this two-step procedure is to reduce the 

search space. Since the ARGOS classification data set 

contains also images without boats, the coarse-grained 

classification is needed to handle undesired images. In 

particular, our method first scans the captured image, 

extracts a feature descriptor of salient object present in it, 

and then classifies it into specific categories of boats.  

3.1. Transfer Learning  

A transfer learning strategy is used to address the need 

of a large data set for modeling the CNN during the 

training stage and to deal with the computational time and 

resources needed. As anticipated in the previous section, 

instead of training the deep network from scratch with 

random weight initialization, we use a pre-trained 

VGG16 net for object detection. The VGG16 structure 

needs to be modified for dealing with our fine-grained 

classification problem. Since the CNN filters extract 

generic features (e.g., edges and colours) at earlier layers, 

our idea is to modify the final layer of the CNN, which 

tends to be more class-specific. Summarizing, the same 

CNN structure of VGG16 has been adopted in two 

transfer learning steps: 

1. Replacing the classifier at the last layer of 

VGG16. 

2. Fine-tuning of the weights of the trained model. 

In order to adapt the VGG16 classifier to our needs, we 

removed the last fully-connected layer of the network by 

extracting the features at the fully-connected layer FC7, 

and by training a linear Support Vector Machine (SVM). 

Since FC7 has an output size of 4096, the extracted 

features are included in vectors of size 4096, which are 

used for training a multi-class SVM model on the 

ARGOS data set, and for testing the capability of the 

obtained CNN. 

 

Figure 3: Boat categories in the ARGOS data set 

3.2. SVM Model Training  

For training the multi-class SVM model, we have 

divided the boat data set with a 7:3 train to test ratio. A 

cross-validation like procedure is used in order to test all 

the images in a single class. Different training steps are 

carried out to test all the images and to extract the 

bounding boxes and the visual features related to the 

objects of interest. The linear SVM model is trained using 

stochastic gradient descent (SGD) and it is then used for 

binary classification among the extracted object. In such 

a way, the input of the CNN is a set of images containing 

only the desired object (i.e., a boat) with a limited area 

containing background information (e.g., water and boat 

wakes). This step allows to accurately train the CNN. 

3.3. Training Data  

The training data for our approach are extracted from the 

publicly available image and video database MarDCT. In 

particular, the used ARGOS classification data set 

contains 24 different classes (see Figure 3), which are 

exploited as positive images for the classification 

procedure. 

A special water class is present that may help to reduce 

the search space or to ignore the false positives caused by 

waves and wakes. The snapshots have a fixed size of 

800×240 pixels. Due to this big size, it is possible to have 
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different objects in the snapshot in addition to boats, 

especially in the case of small and middle size boats. 

Our data set represents a unique domain due to the 

presence of a number of boat types that are specific to the 

City of Venice (e.g., gondolas).  However, from a general 

point of view, our data set is not extremely different in 

context from the data set used for training VGG16 model. 

As stated before, the VGG16 model is able to capture 

general features in its early layers, which are relevant and 

useful for boat classification. 

A slight modification is made on the VGG16 structure 

to improve training time with no effect on classification 

performance. We kept the size of the input image (i.e., 

800×240) to avoid any distortion. The amount of 

computational by convolutional layers will greatly 

increase as initial set of convolutions are occurring over 

the entire input image. The first convolutional layer is 

replaced by a 3x3 strided convolutional layer. The 

pooling layers are removed to transfer learning through 

kernel associations instead of fixing the pooling operation. 

Springenberg et al. (2014) to reduce the computational 

burden have presented a similar work. A single 

classification layer replaces the fully connected hidden 

layers. Moreover, to speed up the training, a batch 

normalization layer is added after each convolutional 

layer (Ioffe et al., 2015). 

Data set augmentation, obtained by increasing the 

number of the training samples, is used in order to allow 

the network to be slightly more invariant, and to avoid 

overfitting. The horizontal flipping, blurring, adding 

noise and denoising images allow us to obtain a data set 

four times larger than the original. Furthermore, dropout 

(Srivastava et al., 2014) is used on top of the last 

convolutional layer during training to improve the 

generalizability of the model. The data set is shuffled and 

divided with the ratio 5:1 train to validation test. 

Figure 4 shows the learning rate curve, the training and 

test losses and the validation accuracy as a function of the 

number of iterations. 

 

 

 

 

Figure 4: Training and test losses, together with test 

accuracy, visualized as a function of the number of 

iterations 

The model achieves a top 3 validation accuracy of 97% 

with a value of 0.1 for the validation loss. Both curves 

converge after 15000 iterations. 

 

4. Experimental Results  

Figure 5 shows eight test images with the corresponding 

classification results. Incorrect results (see Figure 5B) are 

mostly due to the presence of multiple vessel in the same 

image and to the noise added by the motion of the boats 

(e.g., boat wakes). 

For training the SVM multi-class classifier, we used 17 

classes, while for training the reduced VGCC16 model, 

we used 11 classes, selected by excluding the water class 

and other categories not having enough samples. The boat 

samples includes boats used for transportation of people 

(e.g., vaporetto) and goods (e.g., mototopo), public utility 

boats (e.g., ambulance), boats used for pleasure and 

tourism (e.g., gondola). 

 

Figure 5: Classification examples. A) Correctly classified 

vessels. B) Incorrect classified samples 
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Table 1: Number of images per boat type 

Class Train images Test images Total

Alilaguna  376 75 452 

Ambulanza  284  56  340 

Barchino  374  74  448 

Lanciafino  2917  583  3500 

Motobarca  717  143  860 

Mototopo 2927  585  3512 

Patanella 930  186  1116 

Polizia 237  47  284 

Raccolta rifiuti 314  62  376 

Topa 260  52  312 

Vaporetto 3164  632  3796 

 

Table 1 shows each categories and the number of 

samples used in both training and validating the model. 

The use of data coming from the scenario of the City of 

Venice allows for analyzing a large variety of boat 

categories. In particular, the used data set contains 24 

different categories of boats navigating in the Grand 

Canal (see Figure 3). 

We use the one-versus-all (OVA) approach for this 

multi-class problem. The overall accuracy of the multi-

class task is computed as: 

             	 	 	 		 	                                               (1) 

where acc represents the classification accuracy over the 

specified number of classes, TP are the true positive 

classified samples, TN is the number of the true negative 

classified samples, P is the number of all positive samples, 

and N is the number of all negative samples. 

Results are given in Figure 6, where the confusion 

matrix shows that the SVM multi-class model achieves 

an accuracy up to 98% on some categories (e.g., vaporetto, 

gondola) and the overall accuracy on 17 classes is 82.4%. 

It is worth to be noted that in our previous work (Bloisi et 

al., 2015), we obtained an accuracy of 73% with 

traditional classification approaches, namely Random 

Forest (RF), Decision Tree Learning Algorithm (J48), 

and K-Nearest Neighbor (KNN). 

 

 

   

Figure 6: Confusion matrix for 17 classes 
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Table 2: Classification results 

Model acc top 1 acc top 3 

SVM 17 classes  0.824 - 

SVM 15 classes 0.860 - 

VGG16 reduced 0.896 0.965 

 

The reduced VGG16 network is trained on 11 boat 

categories using the Caffe framework (Jia et. al., 2014). 

The multinomial logistic loss for a one-of-many 

classification task is computed over real-valued 

predictions probability distribution over classes, 

which are given by SoftMax. The training loss and test 

loss are measured. The test accuracy is measured as 

top 1 accuracy (the model gives the highest prediction 

to the correct class) and the top 3 accuracy. Table 2 

shows the quantitative classification results by 

adopting a pre-processing step for filtering out 

possible outliers. 

Figure 7 shows the achieved improvement on the 

classification procedure. 

 

Figure 7: Classification of multiple boats in the same 

image 

The water class can be ignored, and the images with 

multiple boats can be processed correctly. Moreover, 

the background elements are removed, and the dataset 

can be used for further training routines. 

 

5. Conclusions  

In this paper, we have presented a vision-based method 

for classifying cooperative and non-cooperative boats in 

populated areas. The proposed approach can be used to 

enhance the traditional surveillance functions in existing 

VTS systems.  

Experimental results demonstrate that it possible to 

achieve an accuracy of 89.6% and to deal with 

challenging situations, including the presence of multiple 

boats or partial occlusions (some of the images used for 

testing contain only portions of vessels). The 

experimental validation has been carried out by making 

use of real data coming from the ARGOS system installed 

in the challenging scenario of the City of Venice in Italy. 

The complete data set used for the evaluation, together 

with additional image sequences captured in real VTS 

sites across Europe, are made available by the authors of 

this paper through the MarDCT database (Bloisi et al., 

2015). 

As future work, we intend to test the proposed approach 

in other challenging real world scenarios, such as the 

Hong Kong bay, where different type of vessels are 

present. 
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